
Reasoning-Modulated Representations

Petar Veličković * 1 Matko Bošnjak * 1 Thomas Kipf 2 Alexander Lerchner 1 Raia Hadsell 1 Razvan Pascanu 1

Charles Blundell 1

Abstract
Neural networks leverage robust internal repre-
sentations in order to generalise. Learning them
is difficult, and often requires a large training
set that covers the data distribution densely. We
study a common setting where our task is not
purely opaque. Indeed, very often we may have
access to information about the underlying sys-
tem (e.g. that observations must obey certain laws
of physics) that any “tabula rasa” neural network
would need to re-learn from scratch, penalising
data efficiency. We incorporate this information
into a pre-trained reasoning module, and investi-
gate its role in shaping the discovered representa-
tions in diverse self-supervised learning settings
from pixels. Our approach paves the way for a
new class of data-efficient representation learning.

1. Introduction
Neural networks are able to learn policies in environments
without access to their specifics (Schrittwieser et al., 2020),
generate large quantities of text (Brown et al., 2020), or auto-
matically fold proteins to high accuracy (Senior et al., 2020).
However, such “tabula rasa” approaches hinge on having
access to substantial quantities of data, from which robust
representations can be learned. Without a large training set
that spans the data distribution, representation learning is
difficult (Belkin et al., 2019; LeCun, 2018; Sun et al., 2017).

In this work, we study ways to construct neural networks
with representations that are robust, while retaining a data-
driven approach. We rely on a simple observation: very
often, we have some (partial) knowledge of the underlying
dynamics of the data, which could help make stronger pre-
dictions from fewer observations. This knowledge, however,
usually requires us to be mindful of abstract properties of
the data—and such properties cannot always be robustly

*Equal contribution 1DeepMind 2Google Research, Brain Team.
Correspondence to: Petar Veličković <petarv@deepmind.com>,
Matko Bošnjak <matko@deepmind.com>.

ICML 2021 Workshop on Self-Supervised Learning for Reasoning
and Perception. Copyright 2021 by the author(s).

x x̄ ȳ y

x̄blu

(rr,xr,vr) = x̄red

x̄org

x̄yel

x̄pur

x̄grn

ȳred = φ

(
x̄red,

∑
c
ψ(x̄c, x̄red)

)
ȳblu

ȳorg

ȳyel

ȳpur

ȳgrn

Figure 1. Bouncing balls example (re-printed, with permission,
from (Battaglia et al., 2016)). Natural inputs, x, correspond to
pixel observations. Predicting future observations (natural outputs,
y), can be simplified as follows: if we are able to extract a set of
abstract inputs, x̄, (e.g. the radius, position and velocity for each
ball), the movements in this space must obey the laws of physics.

extracted from natural observations.

Motivation Consider the task of predicting the future state
of a system of n bouncing balls, from a pixel input x (Fig-
ure 1). Reliably estimating future pixel observations, y, is
a challenging reconstruction task. However, the generative
properties of this system are simple. Assuming knowledge
of simple abstract inputs (radius, rc, position, xc, and ve-
locity, vc) for every ball, x̄c, the future movements in this
abstract space are the result of applying the laws of physics
to these low-dimensional quantities. Hence, future abstract
states, ȳ, can be computed via a simple algorithm that ag-
gregates pair-wise forces between objects.

While this gives us a potentially simpler path from pixel
inputs to pixel outputs, via abstract inputs to abstract outputs
(x → x̄ ȳ → y), it still places potentially unrealistic
demands on our task setup, every step of the way:

x→ x̄: Necessitates either upfront knowledge of how to
abstract away x̄ from x, or a massive dataset of
paired (x, x̄) to learn such a mapping from;

x̄ ȳ: Implies that the algorithm perfectly simulates all
aspects of the output. In reality, an algorithm may
often only give partial context about y. Further, al-
gorithms often assume that x is provided without
error, exposing an algorithmic bottleneck (Deac
et al., 2020): if x̄ is incorrectly predicted, this will
negatively compound in ȳ, hence y;

ȳ→ y: Necessitates a renderer that generates y from ȳ, or
a dataset of paired (ȳ,y) to learn such a mapping.

ar
X

iv
:2

10
7.

08
88

1v
1

 [
cs

.L
G

]
 1

9
Ju

l 2
02

1

Reasoning-Modulated Representations

x̄

x̄blu

x̄red

x̄org

x̄yel

x̄pur

x̄grn

Abstract inputs

z

z1

z2

z3

z4

z5

z6

Latents

ȳ

ȳblu

ȳred

ȳorg

ȳyel

ȳpur

ȳgrn

Abstract outputs

x

Natural inputs

y

Natural outputs

f g

P

f̃ g̃

Figure 2. Reasoning-modulated representation learner (RMR).

We will assume a general setting where none of the above
constraints hold: we know that the mapping x̄ ȳ is
likely of use to our predictor, but we do not assume a trivial
mapping or a paired dataset which would allow us to convert
directly from x to x̄ or from ȳ to y. Our only remaining
assumption is that the algorithm x̄ ȳ can be efficiently
computed, allowing us to generate massive quantities of
paired abstract input-output pairs, (x̄, ȳ).

Present work In this setting, we propose Reasoning-
Modulated Representations (RMR), an approach that first
learns a latent-space processor of abstract data; i.e. a

mapping x̄
f−→ z

P−→ z′
g−→ ȳ, where z ∈ Rk are high-

dimensional latent vectors. f and g are an encoder and
decoder, designed to take abstract representations to and
from this latent space, and P is a processor network which
simulates the algorithm x̄ ȳ in the latent space.

We then observe, in the spirit of neural algorithmic reason-
ing (Veličković & Blundell, 2021), that such a processor net-
work can be used as a drop-in differentiable component for
any task where the x̄ ȳ kind of reasoning may be appli-

cable. Hence, we then learn a pipeline x
f̃−→ z

P−→ z′
g̃−→ y,

which modulates the representations z obtained from x, forc-
ing them to pass through the pre-trained processor network.
By doing so, we have ameliorated the original requirement
for a massive natural dataset of (x,y) pairs. Instead, we
inject knowledge from a massive abstract dataset of (x̄, ȳ)
pairs, directly through the pre-trained parameters of P . This
has the potential to relieve the pressure on encoders and de-
coders f̃ and g̃, which we experimentally validate on several
challenging representation learning domains.

2. RMR architecture
Throughout this section, it will be useful to refer to Figure 2
which presents a visual overview of this section.

Preliminaries We assume a set of natural inputs, X , and
a set of natural outputs, Y . These sets represent the possible

inputs and outputs of a target function, Φ : X → Y , which
we would like to learn based on a (potentially small) dataset
of input-output pairs, (x,y), where y = Φ(x).

We further assume that the inner workings of Φ can be re-
lated to an algorithm, A : X̄ → Ȳ . The algorithm operates
over a set of abstract inputs, X̄ , and produces outputs from
an abstract output set Ȳ . Typically, it will be the case that
dim X̄ � dimX ; that is, abstract inputs are assumed sub-
stantially lower-dimensional than natural inputs. We do not
assume existence of any aligned input pairs (x, x̄), and we
do not assume that A perfectly explains the computations
of Φ. What we do assume is that A is either known or can
be trivially computed, giving rise to a massive dataset of
abstract input-output pairs, (x̄, ȳ), where ȳ = A(x̄).

Lastly, we assume a latent space, Z , and that we can con-
struct neural network components to both encode and de-
code from it. Typically, Z will be a real-valued vector space
(Z = Rk) which is high-dimensional; that is, k > dim X̄ .
This ensures that any neural networks operating over Z are
not vulnerable to bottleneck effects.

Note that either the natural or abstract input set may be
factorised, e.g., into objects; in this case, we can accordingly
factorise the latent space, enforcing Z = Rn×k, where
n is the assumed maximal number of objects (typically a
hyperparameter of the models if not known upfront).

Abstract pipeline RMR training proceeds by first learn-
ing a model of the algorithm A, which is bound to pass
through a latent-space representation. That is, we learn a
neural network approximator g(P (f(x̄))) ≈ A(x̄), which
follows the encode-process-decode paradigm (Hamrick
et al., 2018). It consists of the following three building
blocks: Encoder, f : X̄ → Z , tasked with projecting the
abstract inputs into the latent space; Processor, P : Z → Z ,
simulating individual steps of the algorithm in the latent
space; Decoder, g : Z → Ȳ , tasked with projecting latents
back into the abstract output space.

Natural pipeline Once an appropriate processor, P , has
been learned, it may be observed that it corresponds to a
highly favourable component in our setting. Namely, we can
relate its operations to the algorithm A, and since it stays
high-dimensional, it is a differentiable component we can
easily plug into other neural networks without incurring any
bottleneck effects. This insight was originally recovered in
XLVIN (Deac et al., 2020), where it yielded a generic im-
plicit planner. We now leverage similar insights for general
representation learning tasks.

On a high level, what we need to do is simple and elegant:
swap out f and g for natural encoders and decoders, f̃ :
X → Z and g̃ : Z → Y , respectively. We are then able to
learn a function g̃(P (f̃(x))) ≈ Φ(x), which is once again

Reasoning-Modulated Representations

to be optimised through gradient descent. We would like
P to retain its semantics during training, and therefore it is
typically kept frozen in the natural pipeline.

3. RMR for bouncing balls
To evaluate the capability of the RMR pipeline for transfer
from the abstract space to the pixel space, we apply it on the
“bouncing balls” problem. The bouncing balls problem is an
instance of a physics simulation problem, where the task is
to predict the next state of an environment in which multiple
balls are bouncing between each other and a bounding box.
Though this problem had been studied in the the context
of physics simulation from (abstract) trajectories (Battaglia
et al., 2016) and from (natural) videos (Watters et al., 2017;
Van Steenkiste et al., 2018; Löwe et al., 2020), here we focus
on the aptitude of RMR to transfer learned representations
from trajectories to videos.

Our results affirm that strong abstract models can be trained
on such tasks, and that including them in a video pipeline
induces more robust representations. See Appendix A for
more details on hyperparameters and experimental setup.

Preliminaries In this setting, trajectories are represented
by 2D coordinates of 10 balls through time, defining our
abstract inputs and outputs X̄ = Ȳ = R10×2. We slice these
trajectories into a series of moving windows containing the
input, x̄∗, spanning a history of three previous states, and
the target, ȳ, representing the next state. We obtain these
trajectories from a 3D simulator (MuJoCo (Todorov et al.,
2012)), together with their short-video renderings, which
represent our natural input and output space X = Y =
R64×64×3. Our goal is to train an RMR abstract model on
trajectories and transfer learned representations to improve
a dynamics model trained on these videos.

Abstract pipeline So as to model the dynamics of tra-
jectories, we closely follow the RMR desiderata for the
abstract model. We set f to a linear projection over the in-
put concatenation, P to a Message Passing Neural Network
(MPNN), following previous work (Battaglia et al., 2016;
Sanchez-Gonzalez et al., 2020), and g to a linear projection.

Our model learns a transition function g(P (f(x̄∗)) ≈ ȳ,
supervised using Mean Squared Error (MSE) over ball posi-
tions in the next step. It achieves an MSE of 4.59× 10−4,
which, evaluated qualitatively, demonstrates the ability of
the model to predict physically realistic behavior when un-
rolled for 10 steps (the model is trained on 1-step dynamics
only). Next, we take the processor P from the abstract
pipeline and re-use it in the natural pipeline.

Natural pipeline Here we evaluate whether the pre-
trained RMR processor can be reused for learning the dy-

Figure 3. RMR for bouncing balls reconstruction rollout. States
marked in green are the natural input, followed by the reconstructed
output. The states below the reconstruction is the ground truth.

namics of the bouncing balls from videos. The pixel-based
encoder f̄ is concatenation of per-input-image Slot Atten-
tion model (Locatello et al., 2020), passed through a linear
layer, and a Broadcast Decoder (Watters et al., 2019) for the
pixel-based decoder ḡ.

The full model is a transition function ḡ(P (f̄(x∗)) ≈ y,
supervised by pixel reconstruction loss over the next step
image. We compare the performance of the RMR model
with a pre-trained processor P against a baseline in which
P is trained fully end-to-end. The RMR model achieves
an MSE of 7.94 ± 0.41 (×10−4), whereas the baseline
achieves 9.47± 0.24 (×10−4). We take a qualitative look
at the reconstruction rollout of the RMR model in Figure 3.

4. Contrastive RMR for Atari
We evaluate the potential of our RMR pipeline for data-
efficient state representation learning on the Atari 2600
console (Bellemare et al., 2013). We find that the RMR is
applicable in this setting because there is a potential wealth
of information that can be obtained about the Atari’s mode
of operation—namely, by inspecting its RAM traces.

Preliminaries Accordingly, we will define our set of ab-
stract inputs and outputs as Atari RAM matrices. Given
that the Atari has 128 bytes of memory, X̄ = Ȳ = B128×8

(where B = {0, 1} is the set of bits). We collect data about
how the console modifies the RAM by acting in the envi-
ronment and recording the trace of RAM arrays we observe.
These traces will be of the form (x̄, a, ȳ) which signify that
the agent’s initial RAM state was x̄, and that after perform-
ing action a ∈ A, its RAM state was updated to ȳ. We
assume that a is encoded as an 18-way one-hot vector.

We would like to leverage any reasoning module obtained
over RAM states to support representation learning from
raw pixels. Accordingly, our natural inputs, X , are pixel
arrays representing the Atari’s framebuffer.

Mirroring prior work, we perform contrastive learning di-
rectly in the latent space, and set Y = Z; that is, our natural
outputs correspond to an estimate of the “updated” latents
after taking an action. All our models use latent representa-
tions of 64 dimensions per slot, meaning Z = R128×64.

Reasoning-Modulated Representations

We note that it is important to generate a diverse dataset
of experiences in order to train a robust RAM model. To
simulate as closely as possible a dataset which might be
gathered by human players of varying skill level, we sample
our data using the 32 policy heads of a pre-trained Agent57
model (Badia et al., 2020). Each policy head collects data
over three episodes in the studied games. Note that this
implies a substantially more challenging dataset than the
one reported by (Anand et al., 2019), wherein data was
collected by a purely random policy, which may well fail to
explore many relevant regions of the games.

Abstract pipeline Firstly, we set out to verify that it is
possible to train nontrivial Atari RAM transition models.
The construction of this abstract experiment follows almost
exactly the abstract RMR setup: f and g are appropriately
sized linear projections, while P needs to take into account
which action was taken when updating the latents. To sim-
plify the implementation and allow further model re-use, we
consider the action a part of the P ’s inputs.

This implies that our transition model learns a function
g(P (f(x̄), a)) ≈ ȳ. We supervise this model using binary
cross-entropy to predict each bit of the resulting RAM state.
Since RAM transitions are assumed deterministic, we as-
sume a fully Markovian setup and learn 1-step dynamics.

For brevity purposes, we detail our exact hyperparameters
and results per each Atari game considered in Appendix B.
Our results ascertain the message passing neural network
(MPNN) (Gilmer et al., 2017) as a highly potent processor
network in Atari: it ranked most potent in 14 out of 19 games
considered, compared to MLPs and Deep Sets (Zaheer et al.,
2017). Accordingly, we will focus on leveraging pre-trained
MPNN processors for the next phase of the RMR pipeline.

Natural pipeline We now set out to evaluate whether our
pre-trained RMR processors can be meaningfully re-used
by an encoder in a pixel-based contrastive learning pipeline.

For our pixel-based encoder f̃ , we use the same CNN trunk
as in (Anand et al., 2019)—however, as we require slot-
level rather than image-level embeddings, the final layers
of our encoder are different. Namely, we apply a 1 × 1
convolution computing 128m feature maps (where m is the
number of feature maps per-slot). We then flatten the spatial
axes, giving every slot m×h×w features, which we finally
linearly project to 64-dimensional features per-slot, aligning
with our pre-trained P . Note that setting m = 1 recovers
exactly the style of object detection employed by C-SWM
(Kipf et al., 2019). Since our desired outputs are themselves
latents, g̃ is a single linear projection to 64 dimensions.

Overall, our pixel-based transition model learns a function
g̃(P (f̃(x), a)) ≈ f̃(y), where y is the next state observed
after applying action a in state x. To optimise it, we re-

Table 1. Natural modelling results for Atari 2600. Bit-level F1

reported for slots with high entropy, as in (Anand et al., 2019).
Results are considered significant at p < 0.05 (paired t-test).

Game C-SWM RMR p-value

Asteroids 0.597±0.002 0.602±0.003 0.006
Berzerk 0.533±0.022 0.528±0.033 0.368
Bowling 0.949±0.003 0.951±0.002 0.110
Boxing 0.667±0.011 0.678±0.006 0.040
Breakout 0.839±0.014 0.868±0.003 0.002
Freeway 0.917±0.018 0.938±0.003 0.020
Frostbite 0.596±0.020 0.641±0.008 0.004
H.E.R.O. 0.799±0.016 0.845±0.016 0.004
Montezuma 0.829±0.006 0.829±0.023 0.490
Ms. Pac-Man 0.606±0.005 0.604±0.003 0.246
Pitfall! 0.608±0.008 0.633±0.016 0.012
Pong 0.765±0.009 0.774±0.004 0.025
Private Eye 0.859±0.009 0.874±0.007 0.043
River Raid 0.764±0.003 0.771±0.002 0.008
Skiing 0.770±0.009 0.769±0.017 0.345
Space Invaders 0.779±0.004 0.779±0.003 0.363
Tennis 0.728±0.003 0.735±0.002 0.004
Venture 0.637±0.005 0.639±0.002 0.337
Yars’ Revenge 0.772±0.002 0.778±0.001 0.002

use exactly the same TransE-inspired (Bordes et al., 2013)
contrastive loss that C-SWM (Kipf et al., 2019) used.

Once state representation learning concludes, all compo-
nents are typically thrown away except for the encoder, f̃ ,
which is used for downstream tasks. As a proxy for evalu-
ating the quality of the encoder, we train linear classifiers
on the concatenation of all slot embeddings obtained from
f̃ to predict individual RAM bits, exactly as in the abstract
model case. Note that, by doing this, we have not violated
our assumption that paired (x, x̄) samples will not be pro-
vided while training the natural model—in this phase of
RAM probing, the encoder f̃ is frozen, and gradients can
only flow into the linear probe.

Our comparisons for this experiment, evaluating our RMR
pipeline against an identical architecture with an unfrozen
P (equivalent to C-SWM (Kipf et al., 2019)) is provided in
Table 1. For each of five random seeds, we feed identical
batches to both models, hence we can perform a paired
t-test to assess the statistical significance of any observed
differences on validation episodes. The results are in line
with our expectations: representations learnt by RMR are
significantly better (p < 0.05) on 12 out of 19 games—and
indistinguishable to C-SWM’s on others. This is despite
the fact their architectures are identical, indicating that the
pre-trained abstract model induces stronger representations
for predicting the underlying factors of the data.

Reasoning-Modulated Representations

Acknowledgements
We would like to thank the developers of JAX (Bradbury
et al., 2018) and Haiku (Hennigan et al., 2020). Fur-
ther, we are very thankful to Adrià Puigdomènech Badia,
Steven Kapturowski, Ankesh Anand, Richard Evans, Yulia
Rubanova, Alvaro Sanchez-Gonzalez and Bojan Vujatović
for their invaluable advice prior to submission.

TK is a Research Scientist at Google Research, Brain Team.
All other authors are Research Scientists at DeepMind.

References
Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.-

A., and Hjelm, R. D. Unsupervised state representation
learning in atari. arXiv preprint arXiv:1906.08226, 2019.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P.,
Vitvitskyi, A., Guo, Z. D., and Blundell, C. Agent57:
Outperforming the atari human benchmark. In Interna-
tional Conference on Machine Learning, pp. 507–517.
PMLR, 2020.

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D., and
Kavukcuoglu, K. Interaction networks for learning
about objects, relations and physics. arXiv preprint
arXiv:1612.00222, 2016.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling
modern machine-learning practice and the classical bias–
variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and
Yakhnenko, O. Translating embeddings for modeling
multi-relational data. In Neural Information Processing
Systems (NIPS), pp. 1–9, 2013.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., and Wanderman-Milne, S. JAX: com-
posable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Deac, A., Veličković, P., Milinković, O., Bacon, P.-L., Tang,
J., and Nikolić, M. Xlvin: executed latent value iteration
nets. arXiv preprint arXiv:2010.13146, 2020.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272. PMLR, 2017.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Hennigan, T., Cai, T., Norman, T., and Babuschkin, I. Haiku:
Sonnet for JAX, 2020. URL http://github.com/
deepmind/dm-haiku.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T., van der Pol, E., and Welling, M. Contrastive
learning of structured world models. arXiv preprint
arXiv:1911.12247, 2019.

LeCun, Y. The power and limits of deep learning. Research-
Technology Management, 61(6):22–27, 2018.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran,
A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf,
T. Object-centric learning with slot attention. arXiv
preprint arXiv:2006.15055, 2020.

Löwe, S., Greff, K., Jonschkowski, R., Dosovitskiy, A.,
and Kipf, T. Learning object-centric video models by
contrasting sets. arXiv preprint arXiv:2011.10287, 2020.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In International Con-
ference on Machine Learning, pp. 8459–8468. PMLR,
2020.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple
neural network module for relational reasoning. arXiv
preprint arXiv:1706.01427, 2017.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., Sifre,
L., Green, T., Qin, C., Žı́dek, A., Nelson, A. W., Bridg-
land, A., et al. Improved protein structure prediction
using potentials from deep learning. Nature, 577(7792):
706–710, 2020.

Strathmann, H., Barekatain, M., Blundell, C., and
Veličković, P. Persistent message passing. arXiv preprint
arXiv:2103.01043, 2021.

http://github.com/google/jax
http://github.com/deepmind/dm-haiku
http://github.com/deepmind/dm-haiku

Reasoning-Modulated Representations

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. Revisiting
unreasonable effectiveness of data in deep learning era.
In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Oct 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber,
J. Relational neural expectation maximization: Unsuper-
vised discovery of objects and their interactions. arXiv
preprint arXiv:1802.10353, 2018.

Veličković, P. and Blundell, C. Neural algorithmic reasoning.
arXiv preprint arXiv:2105.02761, 2021.

Veličković, P., Buesing, L., Overlan, M. C., Pascanu, R.,
Vinyals, O., and Blundell, C. Pointer graph networks.
arXiv preprint arXiv:2006.06380, 2020.

Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu,
R., and Tacchetti, A. Visual interaction networks: Learn-
ing a physics simulator from video. Advances in neural
information processing systems, 30:4539–4547, 2017.

Watters, N., Matthey, L., Burgess, C. P., and Lerchner, A.
Spatial broadcast decoder: A simple architecture for learn-
ing disentangled representations in vaes. arXiv preprint
arXiv:1901.07017, 2019.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R., and Smola, A. Deep sets. arXiv
preprint arXiv:1703.06114, 2017.

A. Bouncing balls modelling setup
Abstract pipeline The f is a linear projection over the
concatenation of inputs, outputting a 128-long representa-
tion for each of the 10 balls in the input. The P is a MPNN
over the fully connected graph of the ball representations. It
is a 2-pass MPNN with a 3-layered ReLU-activated MLP
as a message function, without the final layer activation,
projecting to the same 128-dimensional space, per object.
Finally, g is a linear projection applied on each object repre-
sentation of the output of P .

The model is MSE-supervised with ball position on the next
step. It is trained on a 8-core TPU for 10000 epochs, with a
batch size of 512, and the Adam optimizer with the initial
learning rate of 0.0001.

Natural pipeline f̄ is a Slot Attention model (Locatello
et al., 2020) on each input image, concatenating the images
and passing them through a linear layer, outputting a 128-
dimensional vector for each of the objects. ḡ is a Broadcast

Decoder (Watters et al., 2019) containing a sequence of 5
transposed convolutions and a linear layer mapping before
calculating the reconstructions and their masks.

The model is MSE-supervised by pixel reconstruction (per-
pixel MSE) over the next step image. Both the RMR and
the baseline are trained on a 8-core TPU for 1000 epochs,
with a batch size of 512, with the Adam optimiser and the
initial learning rate of 0.0001, all over 3 random seeds.

B. Atari abstract modelling setup and results
Our best processor network is a MPNN (Gilmer et al., 2017)
over a fully connected graph (Santoro et al., 2017) of RAM
slots, which concatenates the action embedding to every
node (as done in (Kipf et al., 2019)). It uses three-layer
MLPs as message functions, with the ReLU activation ap-
plied after each hidden layer. The entire model is trained for
every game in isolation, over 48 distinct episodes of Agent57
experience. We use the Adam SGD optimiser (Kingma &
Ba, 2014) with a batch size of 50 and a learning rate of
0.001 across all Atari experiments. To evaluate the benefits
of message passing, we also compare our model to Deep
Sets (Zaheer et al., 2017), which is equivalent to our MPNN
model—only it passes messages over the identity adjacency
matrix. Lastly, we evaluate the benefits of factorised la-
tents by comparing our methods against a three-layer MLP
applied on the flattened RAM state.

One immediate observation is that RAM updates in Atari
are extremely sparse, with a copy baseline already being
very strong for many games. To prevent the model from
having to repeatedly re-learn identity functions, we also
make it predict masks of the shape M = B128, specify-
ing which cells are to be overwritten by the model at this
step. This strategy, coupled with teacher forcing (as done by
(Veličković et al., 2020; Strathmann et al., 2021)) yielded
substantially stronger predictors. We also use this obser-
vation to prevent over-inflating our prediction scores: we
only display prediction accuracy over RAM slots with label
entropy larger than 0.6 (as done by (Anand et al., 2019)).

The full results of training Atari RAM transition models,
for the games studied in (Anand et al., 2019), are provided
in Table 2. We evaluate both bit-level F1 scores, as well as
slot-level accuracy (for which all 8 bits need to be predicted
correctly in order to count), over the remaining 48 Agent57
episodes as validation. To the best of our knowledge, this is
the first comprehensive feasibility study for learning Atari
RAM transition models.

Reasoning-Modulated Representations

Table 2. Abstract modelling results for Atari 2600. Entire-slot accuracies and bit-level F1 scores are reported only for slots with high
entropy, as per (Anand et al., 2019).

Copy baseline MLP Deep Sets MPNN
Game Slot acc. Bit F1 Slot acc. Bit F1 Slot acc. Bit F1 Slot acc. Bit F1

Asteroids 70.65% 0.856 71.28% 0.872 72.84% 0.879 80.69% 0.930
Berzerk 84.32% 0.905 86.17% 0.930 84.16% 0.923 86.67% 0.933
Bowling 93.86% 0.972 97.43% 0.991 90.72% 0.966 98.41% 0.995
Boxing 59.78% 0.848 54.45% 0.834 59.79% 0.890 58.56% 0.877
Breakout 89.80% 0.949 92.77% 0.970 94.34% 0.979 96.45% 0.988
Freeway 46.65% 0.787 75.93% 0.921 84.68% 0.959 89.17% 0.965
Frostbite 76.83% 0.904 79.09% 0.904 78.25% 0.946 76.52% 0.918
H.E.R.O. 76.71% 0.891 82.96% 0.932 80.17% 0.929 89.07% 0.956
Montezuma’s Revenge 82.58% 0.907 87.30% 0.941 85.90% 0.951 85.44% 0.932
Ms. Pac-Man 83.80% 0.941 80.60% 0.935 81.50% 0.952 85.88% 0.966
Pitfall! 66.60% 0.862 78.28% 0.923 81.92% 0.947 80.40% 0.941
Pong 68.76% 0.873 73.58% 0.911 74.71% 0.920 83.23% 0.952
Private Eye 75.25% 0.889 81.95% 0.932 84.77% 0.954 86.41% 0.955
River Raid 76.95% 0.895 80.82% 0.927 69.96% 0.865 86.79% 0.954
Skiing 91.02% 0.966 93.42% 0.980 93.51% 0.983 96.37% 0.992
Space Invaders 81.67% 0.942 84.62% 0.957 89.38% 0.974 91.98% 0.985
Tennis 78.13% 0.890 82.13% 0.926 71.60% 0.856 80.20% 0.893
Venture 61.29% 0.858 63.16% 0.863 64.88% 0.886 76.56% 0.935
Yars’ Revenge 69.25% 0.896 74.87% 0.929 72.69% 0.948 84.11% 0.969

