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Abstract

A celebrated 1976 theorem of Aumann asserts that honest, rational Bayesian agents
with common priors will never “agree to disagree”: if their opinions about any topic
are common knowledge, then those opinions must be equal. Economists have writ-
ten numerous papers examining the assumptions behind this theorem. But two key
questions went unaddressed: first, can the agents reach agreement after a conversation
of reasonable length? Second, can the computations needed for that conversation be
performed efficiently? This paper answers both questions in the affirmative, thereby
strengthening Aumann’s original conclusion.

We first show that, for two agents with a common prior to agree within ε about the
expectation of a [0, 1] variable with high probability over their prior, it suffices for them
to exchange order 1/ε2 bits. This bound is completely independent of the number of
bits n of relevant knowledge that the agents have. We then extend the bound to three
or more agents; and we give an example where the economists’ “standard protocol”
(which consists of repeatedly announcing one’s current expectation) nearly saturates
the bound, while a new “attenuated protocol” does better. Finally, we give a protocol
that would cause two Bayesians to agree within ε after exchanging order 1/ε2 messages,
and that can be simulated by agents with limited computational resources. By this we
mean that, after examining the agents’ knowledge and a transcript of their conversation,
no one would be able to distinguish the agents from perfect Bayesians. The time used
by the simulation procedure is exponential in 1/ε6 but not in n.

1 Introduction

A vast body of work in AI, economics, philosophy, and other fields seeks to model human
beings as Bayesian agents—agents that start out with some prior probability distribution
over possible states of the world, then update the distribution as they gather new information
[17]. Because of its simplicity, the “humans-as-roughly-Bayesians” thesis has remained
popular, despite the work of Allais [1], Tversky and Kahneman [19], and others; and despite
well-known problems such as old evidence [8]. But one aspect of human experience seems
especially hard to reconcile with the thesis.
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Pick any two people, and there will be some factual question that they disagree about:
who killed Kennedy, whether extraterrestrial life exists, who will win the next election, etc.1

The more intelligent the people, the easier it will be to find such a question. If they discuss
the question, chances are excellent that they will not reach agreement, but will instead
become more confirmed in their previous beliefs. This is so even if the people respect each
other’s intelligence and honesty.

The above facts are known to everyone, yet as Aumann [2] observed in 1976, they con-
stitute a serious challenge to Bayesian accounts of human reasoning. For suppose Alice and
Bob are Bayesians, who have the same prior probabilities for all states of the world, but who
have since gained different knowledge and thus have different posterior probabilities. Sup-
pose further that, conditioned on everything she knows, Alice assigns a posterior probability
p to (say) extraterrestrial life existing. Bob likewise assigns a posterior probability q. Then
provided both agents know p and q (and know that they know them, etc.), Aumann showed
that p and q must be equal. This is true even if neither agent has any idea on what sort of
evidence the other’s estimate is based. For the sort of evidence can itself be considered a
random variable, which is ultimately governed by a prior probability distribution that is the
same for both agents.

Admittedly, the agents are unlikely to agree immediately after exchanging p and q. For
conditioned on Alice’s estimate being p, Bob will revise his estimate q, and similarly Alice
will revise p conditioned on Bob’s estimate q. The agents will then have to exchange their
new estimates p′ and q′, and so on iteratively. But provided the set of possible states is
finite, it is easy to show that this iterative process must terminate eventually, with both
agents having the same estimate [9]. In conclusion, then, we should not expect the agents
ever to disagree persistently about any factual assertion.

On hearing this theorem for the first time, all of us come up with plausible ways in which
actual human beings might evade its conditions. People have self-serving biases; they often
discard or distort evidence that goes against what they want to believe [10]. (According
to an often-cited study [6], 94% of professors consider themselves better at their jobs than
their average colleagues.2) People might interpret the same assertion differently. Or the
assertion might be inherently ambiguous. People might weigh the same evidence by different
criteria. They might not understand the evidence. They might defend their opinions as
high-school debaters do, out of sport rather than a desire for truth. They might not report
their opinions with candor; or if they do, they might not trust others to do likewise.

In our view, the real challenge is not to list such caveats, but to sift through them and
to discover which ones are fundamental. As an illustration, several of the caveats listed
above disappear once we assume that all people have a common prior. For among other
things, such a prior would assign common probabilities to all possible ways of parsing an
ambiguous sentence, and to all possible ways of weighing evidence. Understandably, then,
much of the criticism of Aumann’s theorem has focused on the common prior assumption
(see [3, 5, 11, 13] for a discussion of that assumption).

But suppose we accept that two people have different priors. The obvious question is,

1If you disagree with this assertion, you are simply providing further evidence for it!
2This is logically possible, but one assumes the response would be similar were the professors asked about

their median colleagues.
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what caused their priors to differ? Different career choices? Different friends? Different
kindergarten teachers? Whatever is named as the first influence, we need merely go back
in time to before that influence took effect. At the earlier time, the two people had the
same prior by assumption. So at later times, they would not really have different priors,
just different posteriors obtained by starting from the same prior and then conditioning on
different life experiences. If we push this reasoning to its limit, as Cowen and Hanson [5]
do, we are left wondering whether prior differences could be encoded in DNA at conception.
Even then, how much confidence should you place in an opinion, if you know that were your
genes different, you would have the opposite opinion? More generally, on what grounds can
you favor your own prior over someone else’s? For all you know, your prior was “switched
by accident” with that person’s at birth!

After staring into the metaphysical abyss of prior differences, a natural reaction is to
step back, and ask if there is some simpler explanation for why Aumann’s theorem fails to
describe the real world. Recall that in the theorem, Alice’s and Bob’s opinions only became
equal by the end of a hypothetical conversation. Might that conversation last an absurdly
long time? After all, if Alice and Bob exchanged everything they knew, then clearly they
would agree about everything. But presumably they are not Siamese twins, and do not
have their entire lives to talk to each other. Thus communication complexity might provide
a fundamental reason for why even honest, rational people could agree to disagree. Indeed,
this was our conjecture when we began studying the topic.

Computational complexity provides a second promising reason. If a “state of the world”
consists of n bits, then Aumann’s theorem requires Alice and Bob to represent a prior
probability distribution over 2n possible states. Even worse, it requires them to calculate
expectations over that distribution, and update it conditioned on new information. If n is
(say) 10000, then this is obviously too much to ask.

1.1 Summary of Results

This paper initiates the study of the communication complexity and computational com-
plexity of agreement protocols. Its surprising conclusion is that complexity is not a major
barrier to agreement—at least, not nearly as major as it seems from the above arguments.
In our view, this conclusion strengthens Aumann’s original theorem substantially, by forcing
our attention back to the origin of prior differences.

For economists, the main novelty of the paper will be our relentless use of asymptotic
analysis. We will never be satisfied to show that a protocol terminates eventually. Instead
we will always ask: do the resources needed for the protocol scale ‘reasonably’ with the
parameters of the problem being solved? Here ‘resources’ include the number of messages,
the number of bits per message, and the number of computational steps; while ‘parameters’
include the number of agents, the number of bits each agent is given, and the desired accuracy
and probability of success. This approach will let us model the limitations of real-world
agents without sacrificing simplicity and elegance.

For computer scientists, the main novelty will be that, when we analyze the communi-
cation complexity of a function f , we care only about how long it takes some set of agents
to agree among themselves about the expectation of f . Whether the agents’ expectations
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agree with external reality is irrelevant.
After introducing notation in Section 2, in Section 3 we present our first set of results,

which concern the communication complexity of agreement.
Section 3.1 studies the “economists’ standard protocol,” introduced by Geanakoplos and

Polemarchakis [9] and alluded to earlier. In that protocol, Alice and Bob repeatedly an-
nounce their current expectations of a [0, 1] random variable, conditioned on all previous
announcements. The question we ask is how many messages are needed before the agents’
expectations agree within ε with probability at least 1− δ over their prior, given parameters
ε and δ. We show that 1/ (δε2) messages suffice. We then show that order 1/ (δε2) mes-
sages still suffice, if instead of sending their whole expectations (which are real numbers), the
agents send “summary” messages consisting of only 2 bits each. What makes these upper
bounds surprising is that they are completely independent of n, the number of bits needed
to represent the agents’ knowledge. By contrast, in ordinary communication complexity
(see [15]), it is easy to show that given a random function f : {0, 1}n ×{0, 1}n → [0, 1], Alice
and Bob would need to exchange order n bits to approximate f to within (say) 1/10 with
high probability.

Given the results of Section 3.1, several questions demand our attention. Is the upper
bound of 1/ (δε2) bits tight, or can it be improved even further? Also, is the economists’
standard protocol always optimal, or do other protocols sometimes need even less commu-
nication? Section 3.2 addresses these questions. Though we are unable to show any lower
bound better than log 1/ε that applies to all protocols, we do give examples where the
standard protocol needs almost 1/ε2 bits. We also show that the standard protocol is not
optimal: there exist cases where the standard protocol uses almost 1/ε2 bits, while a new
protocol (which we call the attenuated protocol) uses fewer bits.

In earlier work, Parikh and Krasucki [16] extended Aumann’s agreement theorem to three
or more agents, who send messages along the edges of a directed graph. Thus, it is natural
to ask whether our efficient agreement theorem extends to this setting as well. Section
3.3 shows that it does: given N agents with a common prior, who send messages along a
strongly connected graph of diameter d, order Nd2/ (δε2) messages suffice for every pair of
agents to agree within ε about the expectation of a [0, 1] random variable with probability
at least 1 − δ over their prior.

In Section 4 we shift attention to the computational complexity of agreement, the subject
of our technically most interesting result. What we want to show is that, even if two
agents are computationally bounded, after a conversation of reasonable length they can still
probably approximately agree about the expectation of a [0, 1] random variable. A large
part of the problem is to say what this even means. After all, if the agents both ignored
their evidence and estimated (say) 1/2, then they would agree before exchanging a single
message! So agreement is only interesting if the agents have made some sort of “good-faith
effort” to emulate Bayesian rationality.

Although we leave unspecified exactly what effort is necessary, we do propose a criterion
that we think is certainly sufficient. This is that the agents be able to simulate a Bayesian
agreement protocol, in such a way that a computationally-unbounded referee, given the
agents’ knowledge together with a transcript of their conversation, be unable to decide
(with non-negligible bias) whether the agents are computationally bounded or not. The
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justification for this criterion is that, just as Turing [18] argued that a perfect simulation
of thinking is thinking, so it seems to us that a statistically perfect simulation of Bayesian
rationality is Bayesian rationality.

But what do we mean by computationally-bounded agents? We discuss this question
in detail in Section 4, but the basic point is that we assume two “subroutines”: one that
computes the [0, 1] variable of interest, given a state of the world ω; and another that samples
a state ω from any set in either agent’s initial knowledge partition. The complexity of the
simulation procedure is then expressed in terms of the number of calls to these subroutines.

Unfortunately, there is no way to simulate the economists’ standard protocol—even our
discretized version of it—using a small number of subroutine calls. The reason is that Alice’s
ideal estimate p might lie on a “knife-edge” between the set of estimates that would cause her
to send message m1 to Bob, and the set that would cause her to send a different message m2.
In that case, it does not suffice for her to approximate p using random sampling; she needs
to determine it exactly. Our solution, which we develop in Section 4.1, is to have the agents
“smooth” their messages by adding random noise to them. By hiding small errors in the
agents’ estimates, such noise makes the knife-edge problem disappear. On the other hand,
we show that in the computationally-unbounded case, the noise does not prevent the agents
from agreeing within ε with probability 1− δ after order 1/ (δε2) messages. In Sections 4.2
and 4.3 we prove the main result: that the smoothed standard protocol can be simulated
using a number of subroutine calls that depends only on ε and δ, not on n. The dependence,
alas, is exponential in 1/ (δ3ε6), so our simulation procedure is still not practical. However,
we expect that both the procedure and its analysis can be considerably improved.

We conclude in Section 5 with some suggestions for future research.

2 Preliminaries

Let Ω be a set of possible states of the world. Throughout this paper, Ω will be finite—both
for simplicity of presentation, and because we do not believe that any physically realistic
agent can ever have more than finitely many possible experiences. Let D be a prior prob-
ability distribution over Ω that is shared by some set of agents. We can assume D assigns
nonzero probability to every ω ∈ Ω, for if not, we simply remove the probability-0 states
from Ω. Whenever we talk about a probability or expectation over a subset S of Ω, unless
otherwise indicated we mean that we start from D and conditionalize on ω ∈ S.

Throughout this paper, we will consider protocols in which agents send messages to
each other in some order. Let Ωi,t (ω) be the set of states that agent i considers possible
immediately after the tth message has been sent, given that the true state of the world is
ω.3 Then ω ∈ Ωi,t (ω) ⊆ Ω, and indeed the set {Ωi,t (ω)}ω∈Ω forms a partition of Ω (note
that we may have Ωi,t (ω) = Ωi,t (ω

′) for distinct ω, ω′). Furthermore, since the agents never
forget messages, we have Ωi,t (ω) ⊆ Ωi,t−1 (ω). Thus we say that the partition {Ωi,t}ω∈Ω

refines {Ωi,t−1}ω∈Ω, or equivalently that {Ωi,t−1}ω∈Ω coarsens {Ωi,t}ω∈Ω. (As a convention,
we freely omit arguments of ω when doing so will cause no confusion.) Notice also that if

3We assume for now that messages are “noise-free”; that is, they partition the state space sharply. Later
we will remove this assumption.
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the tth message is not sent to agent i, then Ωi,t (ω) = Ωi,t−1 (ω).
Now let f : Ω → [0, 1] be a real-valued function that the agents are interested in estimat-

ing. The assumption f (ω) ∈ [0, 1] is without loss of generality—for since Ω is finite, any
function from Ω to R has a bounded range, which we can take to be [0, 1] by rescaling. We
can think of f (ω) as the probability of some future event conditioned on ω, but this is not
necessary. Let Ei,t (ω) = EXω′∈Ωi,t(ω) [f (ω′)] be agent i’s expectation of f at step t, given
that the true state of the world is ω. Also, let Θi,t (ω) = {ω′ : Ei,t (ω

′) = Ei,t (ω)} be the set
of states for which agent i’s expectation of f equals Ei,t (ω). Then the partition {Θi,t}ω∈Ω

coarsens {Ωi,t}ω∈Ω, and Ei,t (ω) = EXω′∈Θi,t(ω) [f (ω′)].
The following simple but important fact is due to Hanson [12].

Proposition 1 ([12]) Suppose the partition {Ωi,t}ω∈Ω refines {Θj,u}ω∈Ω. Then

EX
ω′∈Ωj,u(ω)

[Ei,t (ω
′)] = EX

ω′∈Θj,u(ω)
[Ei,t (ω

′)] = Ej,u (ω)

for all ω ∈ Ω. As a consequence, an agent’s expectation of its future expectation of f always
equals its current expectation. As another consequence, if Alice has just communicated her
expectation of f to Bob, then Alice’s expectation of Bob’s expectation of f equals Alice’s
expectation.

Proof. In each case, we are taking the expectation of f over a subset S ⊆ Ω (either
Ωj,u (ω) or Θj,u (ω)) for which EXω′∈S [f (ω′)] = Ej,u (ω). How S is “sliced up” has no effect
on the result.

Proposition 1 already demonstrates a dramatic difference between Bayesian agreement
protocols and actual human conversations. Suppose Alice and Bob are discussing whether
useful quantum computers will be built by the year 2050. Bob says that, in his opinion,
the chance of this happening is only 5%. Alice says she disagrees: she thinks the chance
is 90%. How much should Alice expect her reply to influence Bob’s estimate? Should she
expect him to raise it to 10%, or even 15%, out of deference to his friend Alice’s judgment?
According to Proposition 1, she should expect him to raise it to 90%! That is, depending
on what else Bob knows, his new estimate might be 85% or 95%, but its expectation from
Alice’s point of view is 90%.

2.1 Miscellany

Asymptotic notation is standard: F (n) = O (G (n)) means there exist positive constants
a, b such that F (n) ≤ a + bG (n) for all n ≥ 0; F (n) = Ω (G (n)) means the same but with
F (n) ≥ a + bG (n); F (n) = Θ (G (n)) means F (n) = O (G (n)) and F (n) = Ω (G (n)); and
F (n) = o (G (n)) means F (n) = O (G (n)) and not F (n) = Ω (G (n)).

We will have several occasions to use the following well-known bound.

Theorem 2 (Chernoff, Hoeffding) Let x1, . . . , xK be K independent samples of a [0, 1]
random variable with mean µ. Then for all α ∈ (0, 1),

Pr [x1 + · · ·+ xK ≤ (1 − α) µK] ≤ e−µα2K/2,

Pr [|x1 + · · ·+ xK − µK| > αK] ≤ 2e−2α2K .
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1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

{ΩA,0} � ∈Ω

{ΩB,0} � ∈Ω {ΩB,1} � ∈Ω

Figure 1: After Alice tells Bob whether EA,0 is 1 or 0, Bob’s partition {ΩB,0}ω∈Ω is refined
to {ΩB,1}ω∈Ω.

3 Communication Complexity

We now introduce and justify the communication complexity model. Assume for the moment
that there are two agents, Alice (A) and Bob (B); Section 3.3 will generalize the model to
three or more agents. We can imagine if we like that Alice and Bob are given n-bit strings
x and y respectively, so that Ω ⊆ {0, 1}n × {0, 1}n. Letting ω = (x, y), we then have
ΩA,0 (ω) ⊆ x × {0, 1}n and ΩB,0 (ω) ⊆ {0, 1}n × y.

In an agreement protocol, Alice and Bob take turns sending messages to each other. Any
such protocol is characterized by a sequence of functions m1, m2, . . . : 2Ω → M, known to
both agents, which map subsets of Ω to elements of a message space M. Possibilities for M
include [0, 1] in a continuous protocol, or {0, 1} in a discretized protocol. In all protocols
considered in this paper, the mt’s will be extremely simple; for example, we might have
mt (S) = EXω′∈S [f (ω′)] be the agent’s current expectation of f .

The protocol proceeds as follows: first Alice computes m1 (ΩA,0 (ω)) and sends it to Bob.
After seeing Alice’s message, and assuming the true state of the world is ω, Bob’s new set
of possible states becomes

ΩB,1 (ω) = ΩB,0 (ω) ∩ {ω′ : m1 (ΩA,0 (ω′)) = m1 (ΩA,0 (ω))}

as in Figure 1. Then Bob computes m2 (ΩB,1 (ω)) and sends it to Alice, whereupon Alice’s
set of possible states becomes

ΩA,2 (ω) = ΩA,0 (ω) ∩ {ω′ : m2 (ΩB,1 (ω′)) = m2 (ΩB,1 (ω))} .

Then Alice computes m3 (ΩA,2 (ω)) and sends it to Bob, and so on.
At this point we should address an obvious question: how do Alice and Bob know each

other’s initial partitions, {ΩA,0}ω∈Ω and {ΩB,0}ω∈Ω? This question is not specific to our
setting; it can be asked about Aumann’s original result and any of its extensions. The
standard solution (see [4] for example) is that the state of the world ω ∈ Ω includes the
agents’ mental states as part of it. From this it follows that every agent has a uniquely
defined partition known to every other agent. For suppose Alice calculates that if the state
of the world is ω, then Bob’s knowledge is ΩB,0 (ω), meaning that he knows (and knows only)
that the state belongs to ΩB,0 (ω). Then for all ω′ ∈ ΩB,0 (ω), she must calculate that if the
state is ω′, then Bob’s knowledge is ΩB,0 (ω) as well. Otherwise one of her calculations was
mistaken.

The reader might object on the following grounds. Suppose Alice and Bob are the
only two agents, and let Ω(0) be the set of possible states of the “external” world—meaning
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everything except Alice and Bob. Next let Ω(1) be the set of possible states of the agents’
knowledge regarding Ω(0), let Ω(2) be the set of possible states of their knowledge regarding
Ω(1), and so on. Then Ω = Ω(0) × Ω(1) × Ω(2) × · · · , which contradicts the assumption that
Ω is finite. Our response is that, since the agents’ brains can store only finitely many bits,
not all elements of Ω(0) × Ω(1) × Ω(2) × · · · are actually possible.

However, the above response is open to a different objection, related to the diagonalization
arguments of Gödel and Turing. Suppose Alice’s and Bob’s brains store n bits each. Then
in order to reason about the set of possible states of their brains, wouldn’t they need brains
that store more than n bits? We leave this conundrum unresolved, confining ourselves
to the following three remarks. First, only a tiny portion of the agents’ brains is likely
to be relevant to their topic of conversation, which means “plenty of room left over” for
metareasoning about knowledge. Second, by reducing the number of brain states that the
agents need to consider, our results in Section 4 will lessen the force of the self-reference
argument, though not eliminate it. Third, the agents’ “knowledge hierarchy” seems likely
to collapse at a low level. That is, Alice might have little idea what sort of evidence shaped
Bob’s opinions about the external world. But Bob probably has some idea what sort of
evidence shaped Alice’s opinions about Bob’s opinions, and Alice probably has a good idea
what sort of evidence shaped Bob’s opinions about Alice’s opinions about Bob’s opinions
(assuming Bob even has nontrivial such opinions). The more indirect the knowledge, the
fewer the ways of obtaining it.

Let us return to explaining the communication complexity model. After the tth message,
we say Alice and Bob (ε, δ)-agree if their expectations of f agree to within ε with probability
at least 1 − δ; that is, if

Pr
ω∈D

[|EA,t (ω) − EB,t (ω)| > ε] ≤ δ.

The goal will be to minimize the number of messages until the agents (ε, δ)-agree.
In our view, (ε, δ)-agreement is a much more fundamental notion than exact agreement.

For suppose f represents the probability that global warming, if left unchecked, will cause
sea levels to rise at least 30 centimeters by the year 2100. If after an hour’s conversation,
any two people could agree within 1/4 about f with probability at least 3/4, then the world
would be a remarkably different place than it now is. That the agreement was inexact and
uncertain would be less significant than the fact that it occurred at all.

But why do we calculate the success probability over D, and not some other distribution?
In other words, what if the agents’ priors agree with each other, but not with external reality?
Unfortunately, in that case it seems difficult to prove anything, since the “true” prior could
be concentrated on a few states that the agents consider vanishingly unlikely. Furthermore,
we conjecture that there exist f,D such that for all agreement protocols, the agents must
exchange Ω (n) bits to agree within ε on every state ω (that is, to (ε, 0)-agree). So given
a protocol that causes Alice and Bob to (ε, δ)-agree, what we should really say is that both
agents enter the conversation expecting to agree within ε with probability at least 1 − δ.
This, of course, is profoundly unlike the situation in real life, where adversaries generally do
not enter arguments expecting to convince or to be convinced.

Let us make two further remarks about the model. First, if the agents want to agree
exactly (that is, (0, 0)-agree), it is clear that in the worst case they need 2n bits of communi-
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cation, n from Alice and n from Bob. Note the contrast with ordinary communication com-
plexity, where n bits always suffice. Indeed, even to produce approximate agreement, two-
way communication is necessary in general, as shown by the example f (x, y) = (2x + y) /3,
where x, y ∈ {0, 1} are uniformly distributed.

Second, our ending condition is simply that the agents (ε, δ)-agree at some step t. We
do not require them to fix this t independently of f and D. The reason is that for any t,
there might exist perverse f,D such that the agents nearly agree for the first t − 1 steps,
then disagree violently at the tth step. However, it seems unfair to penalize the agents in
such cases.

The following is the best lower bound we are able to show on agreement complexity.

Proposition 3 There exist f,D such that for all ε ≥ 2−n and δ ≥ 0, Alice must send
Ω
(
log 1−δ

ε

)
bits to Bob and Bob must send Ω

(
log 1−δ

ε

)
bits to Alice before the agents (ε, δ)-

agree. In particular, if δ is bounded away from 1 by a constant, then Ω (log 1/ε) bits are
needed.

Proof. Let Ω = {1, . . . , 2n}2, let D be uniform over Ω, and let f (x, y) = (x + y) /2n+1

for all (x, y) ∈ Ω. Thus if x̂ is Bob’s expectation of x at step t and ŷ is Alice’s expectation
of y, then EA,t = (x + ŷ) /2n+1 and EB,t = (x̂ + y) /2n+1. Suppose one agent, say Alice, has
sent only t < log2

(
1−δ

ε

)
− 2 bits to Bob. For each i ∈ {1, . . . , 2t}, let pi be the probability

of the ith message sequence from Alice. Conditioned on i, there are 2npi values of x still
possible from Bob’s point of view. So regardless of EB,t, the probability of |EA,t − EB,t| ≤ ε
can be at most 4ε/pi. Therefore the agents agree within ε with total probability at most

2t∑

i=1

pi

(
4ε

pi

)
= 4ε2t < 1 − δ.

3.1 Convergence of the Standard Protocol

The two-player “standard protocol” is simply the following: first Alice sends EA,0, her current
expectation of f , to Bob. Then Bob sends his expectation EB,1 to Alice, then Alice sends
EA,2 to Bob, and so on. Geanakoplos and Polemarchakis [9] observed that for any f,D,
if the agents use the standard protocol then after a finite number of messages T , they will
reach consensus—meaning that EA,T = EB,T , both agents know this, both know that they
know it, etc. In particular, in our terminology Alice and Bob (0, 0)-agree.

In this section we ask how many messages are needed before the agents (ε, δ)-agree. The
surprising and unexpected answer, in Theorem 5, is that 1/ (δε2) messages always suffice,
independently of n and all other parameters of f and D. One might guess that, since the
expectations EA,0, EB,1, . . . are real numbers, the cost of communication must be hidden in
the length of the messages. However, in Theorem 6 we show even if the agents send only 2-bit
“summaries” of their expectations, O (1/ (δε2)) messages still suffice for (ε, δ)-agreement.

Given any function F : Ω → [0, 1], let ‖F‖2
2 = EXω∈D

[
F (ω)2

]
. The following proposition

will be used again and again in this paper.

9



Proposition 4 Suppose the partition {Ωi,t}ω∈Ω refines {Θj,u}ω∈Ω. Then

‖Ei,t‖2
2 − ‖Ej,u‖2

2 = ‖Ei,t − Ej,u‖2
2

so in particular, ‖Ei,t‖2
2 ≥ ‖Ej,u‖2

2. A special case is that ‖Ei,t+1‖2
2 ≥ ‖Ei,t‖2

2 for all i, t.

Proof. We have

EX [Ei,tEj,u] = EX
ω∈D

[
Ej,u (ω) EX

ω′∈Θj,u(ω)
[Ei,t (ω

′)]

]
= EX

ω∈D
[Ej,u (ω) · Ej,u (ω)] = ‖Ej,u‖2

2

by Proposition 1, and therefore

‖Ei,t − Ej,u‖2
2 = ‖Ei,t‖2

2 + ‖Ej,u‖2
2 − 2 EX [Ei,tEj,u] = ‖Ei,t‖2

2 − ‖Ej,u‖2
2 .

We can now prove an upper bound on the number of messages needed for agreement.

Theorem 5 For all f,D, the standard protocol causes Alice and Bob to (ε, δ)-agree after at
most 1/ (δε2) messages.

Proof. Intuitively, so long as the agents disagree by more than ε with high probability,
Alice’s expectation EA,1, EA,2, . . . follows an unbiased random walk with step size roughly
ε. Furthermore, this walk has two absorbing barriers at 0 and 1, for the simple fact that
EA,t ∈ [0, 1]. And we expect a random walk with step size ε to hit a barrier after about
1/ε2 steps.

To make this intuition precise, we need only track the expectation, not of EA and EB,
but of E2

A and E2
B. Suppose Alice sends the tth message. Then Bob’s partition {ΩB,t}ω∈Ω

refines {ΘA,t−1}ω∈Ω. It follows by Proposition 4 that

‖EB,t‖2
2 − ‖EA,t−1‖2

2 = ‖EB,t − EA,t−1‖2
2 .

Assuming Pr [|EB,t − EA,t−1| > ε] ≥ δ, this implies that ‖EB,t‖2
2 > ‖EA,t−1‖2

2+δε2. Similarly,

after Bob sends Alice the (t + 1)st message, we have ‖EA,t+1‖2
2 > ‖EB,t‖2

2 + δε2. So until the

agents (ε, δ)-agree, each message increases max
{
‖EA,t‖2

2 , ‖EB,t‖2
2

}
by more than δε2. But

the maximum can never exceed 1 (since EA,t, EB,t ∈ [0, 1]), which yields an upper bound of
1/ (δε2) on the number of messages.

As mentioned previously, the trouble with the standard protocol is that sending one’s
expectation might require too many bits. A simple way to discretize the protocol is as
follows. Imagine a “monkey in the middle,” Charlie, who has the same prior distribution
D as Alice and Bob and who sees all messages between them, but who does not know
either of their inputs. In other words, letting ΩC,t (ω) be the set of states that Charlie
considers possible after the first t messages, we have ΩC,0 (ω) = Ω for all ω. Then the
partition {ΩC,t}ω∈Ω coarsens both {ΩA,t}ω∈Ω and {ΩB,t}ω∈Ω; therefore both Alice and Bob
can compute Charlie’s expectation EC,t (ω) = EXω′∈ΩC,t(ω) [f (ω′)] of f .

Now whenever it is her turn to send a message to Bob, Alice sends the message “high”
if EA,t > EC,t + ε/4, “low” if EA,t < EC,t − ε/4, and “medium” otherwise. This requires
2 bits. Likewise, Bob sends “high” if EB,t > EC,t + ε/4, “low” if EB,t < EC,t − ε/4, and
“medium” otherwise.
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Theorem 6 For all f,D, the discretized protocol described above causes Alice and Bob to
(ε, δ)-agree after O (1/ (δε2)) messages.

Proof. The plan is to show that either ‖EA,t‖2
2, ‖EB,t‖2

2, or ‖EC,t‖2
2 increases by at least

δε2/512 with every message of Alice’s, until Alice and Bob (ε, δ)-agree. Since ‖Ei,t‖2
2 ≤ 1

for all i, this will imply an upper bound of 3072/ (δε2) on the number of messages (we did
not optimize the constant!).

Assume that Pr [|EA,t − EB,t| > ε] ≥ δ and it is Alice’s turn to send the (t + 1)st message.
By the triangle inequality, either

Pr
[
|EA,t − EC,t| >

ε

2

]
≥ δ

2
or

Pr
[
|EB,t − EC,t| >

ε

2

]
≥ δ

2
.

We analyze these two cases separately. In the first case, with probability at least δ/2 Alice’s
message is either “high” or “low.” If the message is “high,” then EC,t+1 becomes an average
of numbers each greater than EC,t+ε/4, so EC,t+1 > EC,t+ε/4. If the message is “low,” then
likewise EC,t+1 < EC,t − ε/4. Since {ΩC,t+1}ω∈Ω refines {ΩC,t}ω∈Ω, Proposition 4 thereby
gives

‖EC,t+1‖2
2 − ‖EC,t‖2

2 = ‖EC,t+1 − EC,t‖2
2 >

δ

2

(ε

4

)2

.

Now for the second case. If, after Alice sends the (t + 1)st message, we still have

Pr
[
|EB,t+1 − EC,t+1| >

ε

4

]
≥ δ

4
,

then the previous argument applied to Bob implies that

‖EC,t+2‖2
2 − ‖EC,t+1‖2

2 >
δ

4

(ε

4

)2

and we are done. So suppose otherwise. Then the difference between Bob’s and Charlie’s
expectations must have changed significantly:

Pr
[
|EB,t − EC,t| − |EB,t+1 − EC,t+1| >

ε

4

]
>

δ

4
.

Hence by another application of the triangle inequality, either

Pr
[
|EB,t+1 − EB,t| >

ε

8

]
>

δ

8
or

Pr
[
|EC,t+1 − EC,t| >

ε

8

]
>

δ

8
.

In the former case, Proposition 4 yields

‖EB,t+1‖2
2 − ‖EB,t‖2

2 = ‖EB,t+1 − EB,t‖2
2 >

δ

8

(ε

8

)2

,

while in the latter case,

‖EC,t+1‖2
2 − ‖EC,t‖2

2 >
δ

8

(ε

8

)2

.
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3.2 Attenuated Protocol

We have seen that two agents, using the standard protocol, will always (ε, δ)-agree after
exchanging only O (1/ (δε2)) messages. This result immediately raises three questions:

(1) Is there a scenario where the standard protocol needs about 1/ε2 messages to produce
(ε, δ)-agreement?

(2) Is the standard protocol always optimal, or do other protocols sometimes outperform
it?

(3) Is there a scenario where any agreement protocol needs a number of communication
bits polynomial in 1/ε?

Although we leave question (3) open, in this section we resolve questions (1) and (2).
In particular, assume for simplicity that δ = 1/2. Then for all ε > 0, Theorem 7 gives a
scenario where the standard protocol uses almost 1/ε2 messages, even if the messages are
continuous rather discrete. By contrast, a new “attenuated protocol” uses only 2 messages,
both consisting of a constant number of bits (independent of ε). Theorem 8 then gives a
fixed scenario where for all ε > 0, the standard protocol uses almost 1/ε2 messages, while
the attenuated protocol uses only 2 messages, both consisting of O (1/ε) bits.

The attenuated protocol is interesting in its own right. The idea is to imagine that in the
standard protocol, the communication channel between Alice and Bob becomes gradually
more noisy as time goes on, so that each message conveys slightly less information than
the one before. It turns out that in some cases, such noise would actually help! For
intuitively, each time the message intensity decreases by ε, the “price” the agents pay in
terms of disagreement is proportional to ε2. So it is better for them to attenuate their
conversation gradually, than to send a sequence of “maximum-intensity” messages followed
by no message (which we can think of as intensity 0).4 Even if the noise that produces this
strange effect is missing from the channel, the agents can easily simulate it. Furthermore,
the messages will turn out to be nonadaptive, so they can all be concatenated into one
message from Alice and one from Bob.

But how do we ensure that the standard protocol needs almost 1/ε2 messages? Intu-
itively, by forcing the random walk behavior of Section 3.1 actually to occur. That is, at
the beginning there will be a disagreement that can only be resolved by Alice sending a bit
to Bob. But then that bit will cause a new disagreement even as it resolves the old one,
and so on.

Theorem 7 For all ε > 0, there exist f,D such that for all δ > 0:

(i) Using the standard protocol, Alice and Bob need to exchange Ω

(
1

ε2 log 2
(1−δ)ε

)
messages

before they (ε, δ)-agree.

(ii) Using a different protocol, they need only exchange 2 messages, both consisting of
O (log 1/δ) bits.

4The same phenomenon occurs in the “Zeno effect” of quantum mechanics.
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In particular, if δ = 1/2 then the standard protocol needs Ω
(

1/ε2

log 1/ε

)
bits whereas the

attenuated protocol needs O (1) bits.

Proof. Let

n =
1

64ε2 ln 6
(1−δ)ε2

(throughout we omit floor and ceiling signs for convenience). The state space Ω consists
of all pairs (x, y), where x = x1 . . . xn and y = y1 . . . yn belong to {−1, 1}n. The prior
distribution D is uniform over Ω. Let

F (x, y) =
1

2
+ 2ε

n∑

i=1

(yi−1xi + xiyi)

where y0 = 1. Then the function that interests the agents is

f (x, y) =





F (x, y) if F (x, y) ∈ [0, 1]
0 if F (x, y) < 0
1 if F (x, y) > 1

.

For simplicity, we first consider F (which need not be bounded in [0, 1]), and later analyze the
“edge effects” that arise in switching to f . We claim that, if the agents use the continuous
standard protocol to evaluate F , then |EA,t − EB,t| = 2ε at all steps t < 2n, where EA,t

and EB,t are Alice’s and Bob’s expectations of F respectively after t messages have been
exchanged. For initially EA,0 = 1/2 + 2εx1 and EB,0 = 1/2. Most of the terms in the sum
defining F (x, y) simply average to 0 for both agents, since Alice does not know the yi’s and
Bob does not know the xi’s. In the first step, however, the expectation that Alice sends to
Bob reveals x1 to him. This causes EB,1 to become 1/2 + 2εx1 + 2εx1y1, which differs from
EA,0 = 1/2 + 2εx1 by 2ε. Then in the second step, the expectation that Bob sends to Alice
reveals y1 to her, thereby “unlocking” the terms x1y1 and y1x2 in her expectation, and so
on. It follows that until all 2n bits x1 . . . xn and y1 . . . yn have been exchanged, the agents
disagree by 2ε with certainty (see Figure 2).

In switching from F to f , the key observation is that Alice’s expectation EA,t (f) of f is
a function of her expectation

EA,t =
1

2
+ 2ε

(
x1 + x1y1 + y1x2 + · · · + x(t−1)/2y(t−1)/2 + y(t−1)/2x(t+1)/2

)

of F . For from Alice’s point of view, the later terms x(t+1)/2y(t+1)/2, y(t+1)/2x(t+3)/2, and so on
are steps in an unbiased random walk with starting point EA,t, step size 2ε, and “snapping
barriers” at 0 and 1. (A snapping barrier is neither absorbing nor reflecting: it allows a
particle through, but if the particle is found on the wrong side of the barrier after the walk
ends, then the particle is moved back to the barrier.) Let E∗

A,t be the ending point of this

walk; then EA,t (f) = EX
[
E∗

A,t

]
is a function of EA,t. Likewise, EB,t (f) = EX

[
E∗

B,t

]
is the

expected ending point of an unbiased walk with starting point EB,t = EA,t+2εx(t+1)/2y(t+1)/2,
step size 2ε, and snapping barriers at 0 and 1.
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Figure 2: Alice’s expectation EA,t (solid line), and Bob’s expectation EB,t (dashed line), as
a function of t

The lower bound for the standard protocol now follows from two claims: first, that EA,t ∈
[1/4, 3/4] and EB,t ∈ [1/4, 3/4] for all t ∈ {0, . . . , 2n} with probability at least δ. Second,
that whenever EA,t and EB,t belong to [1/4, 3/4], we have |EA,t (f) − EB,t (f)| > ε. For the
first claim, choose z1, . . . , z2n uniformly and independently from {0, 1}; then Theorem 2 says
that

Pr [|z1 + · · ·+ z2n − n| > α (2n)] ≤ 2e−4α2n.

Setting α = 1/4
2ε(2n)

, this implies that for any fixed t,

Pr [|EA,t − 1/4| > 1/4] ≤ 2e−1/(64ε2n) ≤ 1 − δ

2n

and similarly for EB,t. The claim now follows from the union bound. For the second claim,
a bound similar to the above implies that

Pr
[∣∣E∗

A,t − EA,t

∣∣ > 1/4
]
≤ 2e−1/(64ε2n) ≤ ε

3

and similarly for E∗
B,t. This in turn implies that |EA,t (f) − EA,t| ≤ ε/3 and |EB,t (f) − EB,t| ≤

ε/3, from whence it follows that |EA,t (f) − EB,t (f)| > ε by the triangle inequality.
We now give the O (log 1/δ) upper bound. It suffices to give a protocol for F , since it is

not hard to see that switching from F to f can only decrease |EA,t − EB,t|. Let k = 8 ln 2/δ.
For each i ∈ {1, . . . , k}, Alice sends Bob a bit that is uniformly random with probability i/k
and xi otherwise. Likewise, Bob sends Alice a bit that is uniformly random with probability
i/k and yi otherwise. Then Alice’s final expectation is

EA,2 =
1

2
+ 2ε

k∑

i=1

(
i − 1

k
yi−1xi +

i

k
xiyi

)

while Bob’s is

EB,2 =
1

2
+ 2ε

k∑

i=1

(
i

k
yi−1xi +

i

k
xiyi

)
.
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So

EB,2 − EA,2 =
2ε

k

k∑

i=1

yi−1xi,

and hence
Pr [|EA,2 − EB,2| > ε] = Pr [|z1 + · · ·+ zk − k/2| > k/4]

where zi = (yi−1xi + 1) /2. Since the zi’s are uniform, independent samples from {0, 1}, the

above probability is at most 2e−2(1/4)2k = δ by Theorem 2.
The main defect of Theorem 7 is that the function f had to be tailored to a particular

ε. The next theorem fixes this defect, although the advantage of the attenuated protocol
over the standard one is not quite as dramatic as in Theorem 7. For simplicity, in stating
the theorem we fix δ = 1/2.

Theorem 8 For all γ ∈ (0, 1), there exist f ,D such that for all ε ≥ 1/n1/(2−γ):

(i) Using the standard protocol, Alice and Bob need to exchange Ω (1/ε2−γ) messages before
they (ε, 1/2)-agree.

(ii) Using the attenuated protocol, they need only exchange 2 messages, both consisting of
O (1/ε) bits.

Sketch. Again we let D be uniform over x = x1 . . . xn and y = y1 . . . yn in {−1, 1}n. We
then let

F (x, y) =
1

2
+

√
γ

10

n∑

i=1

yi−1xi + xiyi

i1/(2−γ)

and

f (x, y) =





F (x, y) if F (x, y) ∈ [0, 1]
0 if F (x, y) < 0
1 if F (x, y) > 1

.

The rest of the proof is almost identical to that of Theorem 7, so we omit it here.

3.3 N Agents

We have seen that two Bayesian agents can reach rapid agreement, provided they commu-
nicate directly with each other. An obvious followup question is, what if there are three
or more agents, each of which talks only to its ‘neighbors’? Will the agents still reach
agreement, and if so, after how long?

Formally, let G be a directed graph with vertices 1, . . . , N , each representing an agent.
Suppose messages can only be sent from agent i to agent j if (i, j) is an edge in G. We need
to assume G is strongly connected, since otherwise reaching agreement could be impossible
for trivial reasons. In this setting, a standard protocol consists of a sequence of edges
(i1, j1) , . . . , (it, jt) , . . . of G. At the tth step, agent it sends its current expectation Eit,t−1

of f to agent jt, whereupon jt updates its expectation accordingly. Call the protocol fair
if every edge occurs infinitely often in the sequence. Parikh and Krasucki [16] proved the
following important theorem.
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Figure 3: For a sample graph G, spanning tree T1 is shown in solid lines, and T2 in dashed
lines.

Theorem 9 ([16]) For all f,D, any fair protocol will cause all the agents’ expectations to
agree after a finite number of messages.

Indeed, the agents will reach consensus after finitely many messages, meaning it will be
common knowledge among them that E1,t = · · · = EN,t. Here, though, we care only about
the weaker condition of agreement.

Our goal is to cause every pair of agents to (ε, δ)-agree,5 after a number of steps poly-
nomial in N , 1/δ, and 1/ε. We can achieve this via the following “spanning-tree protocol.”
Let T1 and T2 be two spanning trees of G of minimum diameter, both rooted at agent 1.
As illustrated in Figure 3, T1 points outward from 1 to the other N − 1 agents; T2 points
inward back to 1. Let O1 be an ordering of the edges of T1, in which every edge originating
at i is preceded by an edge terminating at i, unless i = 1. Likewise let O2 be an ordering
of the edges of T2, in which every edge originating at i is preceded by an edge terminating
at i, unless i is a leaf of T2. Then the protocol is simply for agents to send their current
expectations along edges of G in the order O1,O2,O1,O2, . . ..

Theorem 10 For all f,D, the spanning-tree protocol causes every pair of agents to (ε, δ)-

agree after O
(

Nd2

δε2

)
messages, where d is the diameter of G.

Proof. We will track ηt = mini ‖Ei,t‖2
2. Observe that, if the tth message is from agent i

to agent j, then the partition {Ωj,t+1}ω∈Ω refines both {Θi,t}ω∈Ω and {Ωj,t}ω∈Ω, and therefore

‖Ej,t+1‖2
2 ≥ max

{
‖Ei,t‖2

2 , ‖Ej,t‖2
2

}

by Proposition 4. Also observe that, in any window of 4N messages, the spanning-tree
protocol “sends information” from every agent to every other. Together these observations
imply that ηt+4N ≥ maxi ‖Ei,t‖2

2. So as long as there exists an i such that ‖Ei,t‖2
2 � ηt, the

protocol makes significant progress.
It may happen, though, that ‖Ei,t‖2

2 is nearly constant as we range over i. Assume

Pr [|Ei,t − Ej,t| > ε] ≥ δ

5If we want every pair of agents to agree within ε with global probability 1 − δ, then we want every pair
to
(
ε, δ/N2

)
-agree.
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for two agents i, j. Consider a path from i to j in G, obtained by first following i to 1 in
T2 and then following 1 to j in T1. This path has at most 2d edges. So by the triangle
inequality, there exist consecutive agents A, B along the path such that

‖EA,t − EB,t‖2 ≥
1

2d
‖Ei,t − Ej,t‖2 >

√
δε2

2d
.

Imagine that the tth message is from A to B. Then since {ΩB,t+1}ω∈Ω refines both {ΘA,t}ω∈Ω

and {ΩB,t}ω∈Ω, Proposition 4 yields

‖EB,t+1 − EA,t‖2
2 = ‖EB,t+1‖2

2 − ‖EA,t‖2
2 ,

‖EB,t+1 − EB,t‖2
2 = ‖EB,t+1‖2

2 − ‖EB,t‖2
2 .

Also, by the triangle inequality either

‖EB,t+1 − EA,t‖2
2 ≥

1

4
‖EA,t − EB,t‖2

2

or

‖EB,t+1 − EB,t‖2
2 ≥

1

4
‖EA,t − EB,t‖2

2 .

Therefore

‖EB,t+1‖2
2 > min

{
‖EA,t‖2

2 , ‖EB,t‖2
2

}
+

1

4

(
δε2

4d2

)
≥ ηt +

δε2

16d2
.

It remains only to show why the above result is not spoiled if A or B receive other
messages before A sends its message to B. Let u be the first time step after t in which A
sends a message to B, and suppose the steps between t and u somehow reduce the distance
between EA and EB:

‖EA,u − EB,u‖2
2 ≤

δε2

16d2
.

Then by the triangle inequality (again!):

‖EA,u − EA,t‖2 + ‖EB,u − EB,t‖2 ≥ ‖EB,t − EA,t‖2 − ‖EB,u − EA,u‖2 >

√
δε2

4d2
−
√

δε2

16d2

so either

‖EA,u − EA,t‖2
2 >

δε2

64d2

or

‖EB,u − EB,t‖2
2 >

δε2

64d2
.

Suppose the former without loss of generality. Then since {ΩA,u}ω∈Ω refines {ΩA,t}ω∈Ω,

‖EA,u‖2
2 = ‖EA,t‖2

2 + ‖EA,u − EA,t‖2
2 > ηt +

δε2

64d2
.

We have shown that maxi ‖Ei,t+2N‖2
2 = ηt+Ω (δε2/d2), from which it follows that ηt+6N =

ηt + Ω (δε2/d2). Hence the constraint ηt ≤ 1 yields an upper bound of O (Nd2/ (δε2)) on
the number of messages.
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Let us make three remarks about Theorem 10. First, naturally one can combine Theo-
rems 10 and 6, to obtain an N -agent protocol in which the messages are discrete. We omit
the details here. Second, all we really need about the order of messages is that information
gets propagated from any agent in G to any other in a reasonable number of steps. Our
spanning-tree construction was designed to guarantee this, but sending messages in a ran-
dom order (for example) would also work. Third, it seems fair to assume that many agents
send messages in parallel; if so, our complexity bound can almost certainly be improved.

4 Computational Complexity

The previous sections have weakened the idea that communication cost is a fundamental
barrier to agreement. However, we have glossed over the issue of computational cost entirely.
A protocol that requires only O (1/ (δε2)) messages has little real-world relevance if it would
take Alice and Bob billions of years to calculate the messages! Moreover, all protocols
discussed above seem to have that problem, since the number of possible states |Ω| could be
exponential in the length n of the agents’ inputs.

Recognizing this issue, Hanson [14] introduced the notion of a “Bayesian wannabe”: a
computationally-bounded agent that can still make sense of what its expectations would
be if it had enough computational power to be a Bayesian. He then showed that under
certain assumptions, if two Bayesian wannabes agree to disagree about the expectation of a
function f (ω), then they must also disagree about some variable that is independent of the
state of the world ω ∈ Ω. However, Hanson’s result does not suggest a protocol by which
two Bayesian wannabes who agree about all state-independent variables could come to agree
about f as well.

Admittedly, if the two wannabes have very limited abilities, it might be trivial to get
them to agree. For example, if Alice and Bob both ignore all their evidence and estimate
f (ω) = 1/3, then they agree before exchanging even a single message. But this example
seems contrived: after all, if one the agents (with equal justification) estimated f (ω) = 2/3,
then no sequence of messages would ever cause them to agree within ε < 1/3. So informally,
what we really want to know is whether two wannabes will always agree, having put in a
“good-faith effort” to emulate Bayesian rationality.

We are thus led to the following question. Is there an agreement protocol that

(i) would cause two computationally-unbounded Bayesians to (ε, δ)-agree after a small
number of messages, and

(ii) can be simulated using a small amount of computation?

We will say shortly what we mean by a “small amount of computation.” By “simulate,”
we mean that a computationally-unbounded referee, given the state ω ∈ Ω together with
a transcript M = (m1, . . . , mR) of all messages exchanged during the protocol, should be
unable to decide (with non-negligible bias) whether Alice and Bob were Bayesians following
the protocol exactly, or Bayesian wannabes merely simulating it. More formally, let B (ω) be
the probability distribution over message transcripts, assuming Alice and Bob are Bayesians
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and the state of the world is ω. Likewise, let W (ω) be the distribution assuming Alice and
Bob are wannabes. Then we require that for all Boolean functions Φ (ω, M),

∣∣∣∣ Pr
ω∈D,M∈B(ω)

[Φ (ω, M) = 1] − Pr
ω∈D,M∈W(ω)

[Φ (ω, M) = 1]

∣∣∣∣ ≤ ζ (*)

where ζ is a parameter that can be made as small as we like (say 0.00001).
A consequence of the requirement (*) is that even if Alice is computationally unbounded,

she cannot decide with bias greater than ζ whether Bob is also unbounded, judging only
from the messages he sends to her. For if Alice could decide, then so could our hypothetical
referee, who learns at least as much about Bob as Alice does. Though a little harder to
see, another consequence is that if Alice is unbounded, but knows Bob to be bounded and
takes his algorithm into account when computing her expectations, her messages will still be
statistically indistinguishable from what they would have been had she believed that Bob
was unbounded. Indeed, no beliefs, beliefs about beliefs, etc., about whether either agent is
bounded or not can significantly affect the sequence of messages, since the truth or falsehood
of those beliefs is almost irrelevant to predicting the agents’ future messages. Also, if Alice
is unbounded for some steps of the protocol but bounded for others, then Bob will never
notice these changes, and would hardly behave any differently were he told of them.

Because of these considerations, we claim that, while simulating a Bayesian agreement
protocol might not be the only way for two Bayesian wannabes to reach an “honest” agree-
ment, it is certainly a sufficient way. Therefore, if we can show how to meet even the
stringent requirement (*), this will provide strong evidence that computation time is not a
fundamental barrier to agreement.

But what do we mean by computation time? We assume the state space Ω is a subset
of {0, 1}n × {0, 1}n, so that Alice’s initial knowledge is an n-bit string x, and Bob’s is an
n-bit string y. Given the prior distribution D over (x, y) pairs, let DA,x be Alice’s posterior
distribution over y conditioned on x, and let DB,y be Bob’s posterior distribution over x
conditioned on y. The following two computational assumptions are the only ones that we
make:

(1) Alice and Bob can both evaluate f (ω) for any ω ∈ Ω.

(2) Alice and Bob can both sample from DA,x for any x ∈ {0, 1}n, and from DB,y for any
y ∈ {0, 1}n.

Our simulation procedure will not have access to descriptions of f or D; it can learn
about them only by calling subroutines for (1) and (2) respectively. The complexity of
the procedure will then be expressed in terms of the number of subroutine calls, other
computations adding a negligible amount of time. Thus, we might stipulate that both
subroutines should run in time polynomial in n. On the other hand, n could be extremely
large—otherwise the agents would simply exchange their entire inputs and be done! So we
probably want to be even stricter, and stipulate that the subroutines should use time (say)
logarithmic in n, albeit with many parallel processors. The latter seems like a better model
for the human brain; after all, to reach an opinion based on our current knowledge, we do
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not contemplate every fact we know in sequential order, but instead zero in quickly on the
relevant facts. In any case, the simulation procedure will treat the subroutines purely as
“black boxes,” so decisions about their implementation will not affect our results.

The justification for assumptions (1) and (2) is that without them, it is hard to see how
the agents could estimate their expectations even before they started talking to each other.
In other words, we have to assume the agents enter the conversation with minimal tools for
reasoning about their universe of discourse. We do not assume that those tools extend to
reasoning about each other’s expectations, expectations of expectations, etc., conditioned on
a sequence of messages exchanged. That the tools do extend in this way is what we intend
to prove.

The one assumption that seems debatable to us is that Alice can sample from Bob’s
distribution DB,y, and Bob can sample from Alice’s distribution DA,y. How can an agent
possibly be expected to possess “someone else’s” sampling subroutine? On further reflection,
though, this question is simply a variant of an earlier question: why can we assume that
Alice knows Bob’s set of possible states ΩB (ω), and that Bob knows ΩA (ω)? For if Alice
knows ΩB (ω) as well as Bob does, then there is no particular reason why she should not be
able to sample from it as well as he can. Again, the reason the agents know each other’s
partitions is that the state of the world ω ∈ Ω includes both agents’ mental states as part of
it. None of this seems too out of line with everyday experience—for whenever we use what
we know to try and figure out what someone else might be thinking, a Bayesian might say
we are sampling an ω from our set of possible states, then sampling from what the other
person’s set of possible states would be if the state of the world were ω.

Finally, let us note that assumptions (1) and (2) can both be relaxed. In particular, it is
enough to approximate f (ω) to within an additive factor η with probability at least 1 − η,
in time that increases polynomially in 1/η. It is also enough to sample from a distribution
whose variation distance from DA,x or DB,y is at most η, in time polynomial in 1/η. Indeed,
since the probabilities and f -values are real numbers, we will generally need to approximate
in order to represent them with finite precision. For ease of presentation, though, we assume
exact algorithms in what follows.

4.1 Smoothed Standard Protocol

Näıvely, requirement (*) seems impossible to satisfy. All of the agreement protocols discussed
earlier in this paper—for example, that of Theorem 6—are easy to distinguish from any
efficient simulation of them. For consider Alice’s first message to Bob. If Alice’s expectation
EA,0 is below some threshold c, she sends one message, whereas if EA,0 ≥ c, she sends a
different message. Even if we fix f , and limit probabilities and f -values to (say) n bits
of precision, we can arrange things so that EA,0 (ω) is exponentially close to c, sometimes
greater and sometimes less, with high probability over ω. Then to decide which message to
send, Alice needs to evaluate f exponentially many times.

We resolve this issue by having the agents add random noise to their messages (“smooth-
ing” them), even if they are unbounded Bayesians. This noise does not prevent the agents
from reaching (ε, δ)-agreement. On the other hand, it makes their messages easier to sim-
ulate. For unlike real numbers a 6= b, which are perfectly distinguishable no matter how
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Figure 4: Agent i “smoothes” its expectation Ei,t with triangular noise before sending it.

close they are, two probability distributions with close means may be hard to distinguish,
like wavepackets in quantum mechanics.

In the smoothed standard protocol, Alice generates her messages to Bob as follows. Let
b ≥ log2 (200/ε) be a positive integer to be specified later. Then let ε be an integer
multiple of 2−b between ε/50 and ε/40, and let L = 2bε. First Alice rounds her current
expectation EA,t of f to the nearest multiple of 2−b. Denote the result by round (EA,t).
She then draws an integer r ∈ {−L, . . . , L}, according to a triangular distribution in which
r = j with probability (L − |j|) /L2 (see Figure 4). The message she sends Bob is mt+1 =
round (EA,t) + 2−br. Observe that since mt+1 ∈ [−ε, 1 + ε], there are at most 2b (1 + 2ε) + 1
possible values of mt+1—meaning Alice’s message takes only b + 1 bits to specify. After
receiving the message, Bob updates his expectation of f using Bayes’ rule, then draws
an integer r ∈ {−L, . . . , L} according to the same triangular distribution and sends Alice
mt+2 = round (EB,t+1) + 2−br. The two agents continue to send messages in this way.

The reader might be wondering why we chose triangular noise, and whether other types
of noise would work equally well. The answer is that we want the message distribution
to have three basic properties. First, it should be concentrated about a mean of Ei,t with
variance at most ˜ε2. Second, shifting the mean by η ≤ ε should shift the distribution by at
most ˜η/ε in variation distance. And third, the derivative of the probably density function
should never exceed ˜η/ε2 in absolute value. Thus, Gaussian noise would also work, though
it is somewhat harder to analyze than triangular noise. However, noise that is uniform over
[−ε, ε] would not work (so far as we could tell), since it violates the third property.

Before we analyze the protocol, we need to develop some notation. Let Mt = (m1, . . . , mt)
consist of the first t messages that Alice and Bob exchange. Since messages are now proba-
bilistic, the agents’ expectations of f at step t depend not only on the initial state of the world
ω, but also on Mt. When we want to emphasize this, we denote the agents’ expectations
by EA,t (ω, Mt) and EB,t (ω, Mt) respectively. Another important consequence of messages
being probabilistic is that after an agent has received a message, its posterior distribution
over ω is no longer obtainable by restricting the prior distribution D to a subset of possible
states. Thus, we let Ωi (ω) = Ωi,0 (ω), since we will never refer to Ωi,t (ω) for t > 0.

Say the agents (ε, δ)-agree after the tth message if

Pr
ω∈Ω,Mt

[|EA,t (ω, Mt) − EB,t (ω, Mt)| > ε] ≤ δ.
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Also, let
‖Ei,t‖2

2 = EX
ω∈Ω,Mt

[
Ei,t (ω, Mt)

2] .

Theorem 11 For all f,D, the smoothed standard protocol causes Alice and Bob to (ε, δ)-
agree after at most 2/ (δε2) messages.

Proof. Similarly to Theorem 6, we let EC,t be the expectation of a third party Charlie
who sees all messages between Alice and Bob, but who knows neither their inputs nor the
random bits that they use to produce their messages. We then track ‖EC,t‖2

2.
Assume that Pr [|EA,t − EB,t| > ε] ≥ δ and that Alice sends the tth message mt. Notice

that mt cannot deviate from Alice’s expectation EA,t = EA,t−1 by more than 2ε, since
|round (EA,t) − EA,t| ≤ ε and |mt − round (EA,t)| ≤ ε. So keeping Mt fixed,

|EA,t (ω, Mt) − EA,t (ω
′, Mt)| ≤ 4ε

for all ω, ω′. Now Charlie’s expectation EC,t (ω, Mt) is just an average of EA,t (ω
′, Mt)’s, so

it follows that
|EC,t (ω, Mt) − EA,t (ω, Mt)| ≤ 4ε

as well. Similarly, after Bob sends the (t + 1)st message,

|EC,t+1 (ω, Mt+1) − EB,t+1 (ω, Mt+1)| ≤ 4ε.

Therefore
Pr [|EC,t+1 − EC,t| > ε − 8ε] ≥ Pr [|EA,t − EB,t| > ε] ≥ δ,

using the triangle inequality and the fact that EB,t+1 = EB,t. The final observation is that
Charlie’s partition of Ω×Mt+1 at step t + 1 refines his partition at step t, so by Proposition
4,

‖EC,t+1‖2
2 − ‖EC,t‖2

2 = ‖EC,t+1 − EC,t‖2
2 > δ (ε − 8ε)2 .

Since ‖EC,t‖2
2 ≤ 1, this yields an upper bound of 1/

(
δ (ε − 8ε)2) < 2/ (δε2) on the number

of messages.

4.2 Simulating the Smoothed Protocol

Having proved that the smoothed standard protocol works, in this section we explain how
Alice and Bob can simulate the protocol. In the ideal case—where the agents have unlimited
computational power—they use the following recursive formulas. Let

∆ (mt, Ei,t−1) =

{
1 − |mt − round (Ei,t−1)| /ε if |mt − round (Ei,t−1)| ≤ ε

0 otherwise

be proportional to the probability that agent i sends message mt, given that its expectation
is Ei,t−1. Also, let qt (ω, Mt) be proportional to the joint probability of messages m1, . . . , mt
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assuming the true state of the world is ω. Then assuming t is even and suppressing depen-
dencies on Mt, for all X, Y we have

qt (Y ) = qt−2 (Y ) ∆ (mt, EB,t−1 (Y )) ,

qt−1 (X) = qt−3 (X)∆ (mt−1, EA,t−2 (X)) ,

EA,t (X) =
EXY ∈ΩA(X) [qt (Y ) f (Y )]

EXY ∈ΩA(X) [qt (Y )]
,

EB,t−1 (Y ) =
EXX∈ΩB(Y ) [qt−1 (X) f (X)]

EXX∈ΩB(Y ) [qt−1 (X)]

with the base cases q0 (Y ) = q−1 (X) = 1 for all X, Y . The correctness of these formulas
follows from simple Bayesian manipulations. Having computed Ei,t (ω) by the formulas
above (note that this does not require knowledge of ω), all agent i needs to do is draw
r ∈ {−L, . . . , L} from the triangular distribution, then send the message

mt+1 = round (Ei,t (ω)) + 2−br.

In the real case, the agents are computationally bounded, and can no longer afford the
luxury of taking expectations over the exponentially large sets Ωi. A natural idea is to
compensate by somehow sampling those sets. But since we never assumed the ability
to sample Ωi conditioned on messages m1, . . . , mt, it is not obvious how that make that
idea work. Our solution will consist of two phases: the construction of “sampling-trees,”
which involves no communication, followed by a message-by-message simulation of the ideal
protocol. Let us describe these phases in turn.

(I) Sampling-Tree Construction. Alice creates a tree TA with height R and branching
factor K. Here R < 2/ (δε2) is the number of messages, and K is a parameter to be specified
later. Let rootA be the root node of TA, and let S (v) be the set of children of node v.
Then Alice labels each of the K nodes w ∈ S (rootA) by a sample Yw ∈ ΩA (ω), drawn
independently from her posterior distribution DA,x. Next, for each w ∈ S (rootA), she labels
each of the K nodes v ∈ S (w) by a sample Xv ∈ ΩB (Yw), drawn independently from Bob’s
distribution DB,y where Yw = (x, y). She continues recursively in this manner, labeling each
v an even distance from the root with a sample Xv ∈ ΩB (Yw) where w is the parent of v,
and each w an odd distance from the root with a sample Yw ∈ ΩA (Xv) where v is the parent
of w. Thus her total number of samples is

K + K2 + · · · + KR =
KR+1 − 1

K − 1
− 1.

Similarly, Bob creates a tree TB with height R and branching factor K. Let rootB be the
root of TB; then Bob labels each v ∈ S (rootB) by a sample Xv ∈ ΩB (ω), each child w ∈ S (v)
of each v ∈ S (rootB) by a sample Yw ∈ ΩA (Xv), and so on, alternating between ΩB and ΩA

at successive levels. As a side remark, if the agents share a random string, then there is no
reason for them not to use the same set of samples. However, we cannot assume that such
a string is available.
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(II) Simulation. We now explain how the agents can use the samples from (I) to
simulate the smoothed standard protocol. First Alice estimates her expectation EA,0 by the
quantity

〈EA,0 (rootA)〉A = EX
w∈S(rootA)

[f (Yw)] =
1

K

∑

w∈S(rootA)

f (Yw) .

She then chooses a random r ∈ {−L, . . . , L} and sends Bob

m1 = round
(
〈EA,0 (rootA)〉A

)
+ 2−br.

On receiving the message, for each v ∈ S (rootB) Bob computes

〈EA,0 (v)〉B =
1

K

∑

w∈S(v)

f (Yw) ,

his estimate of EA,0 (Xv) assuming ω = Xv. He then defines

〈q0 (v)〉B = ∆
(
m1, 〈EA,0 (v)〉B

)

and estimates his own expectation EB,1 (ω) by

〈EB,1 (rootB)〉B =

∑
v∈S(rootB) 〈q0 (v)〉B f (Xv)∑

v∈S(rootB) 〈q0 (v)〉B
.

Finally, he chooses a random r ∈ {−L, . . . , L} and sends Alice

m2 = round
(
〈EB,1 (rootB)〉B

)
+ 2−br.

In general, if t is even then the recursive formulas for agent i are

〈qt (w)〉i = 〈qt−2 (w)〉i ∆
(
mt, 〈EB,t−1 (w)〉i

)
,

〈qt−1 (v)〉i = 〈qt−3 (v)〉i ∆
(
mt−1, 〈EA,t−2 (v)〉i

)
,

〈EA,t (v)〉i =

∑
w∈S(v) 〈qt (w)〉i f (Yw)
∑

w∈S(v) 〈qt (w)〉i
,

〈EB,t−1 (w)〉i =

∑
v∈S(w) 〈qt−1 (v)〉i f (Xv)∑

v∈S(w) 〈qt−1 (v)〉i
with the base cases 〈q0 (w)〉i = 〈q−1 (v)〉i = 1 for all w, v. Agent i computes a message mt

in the obvious way, from its expectation at the root of Ti:

mt = round
(
〈Ei,t−1 (rooti)〉i

)
+ 2−br.

That completes the description of the simulation procedure. Its complexity is easily
determined: let T1 be the number of computational steps needed to sample from DA,x or DB,y,
and let T2 be number of steps needed to evaluate f . Then both agents use O

(
KR (T1 + T2)

)

steps, where we have summed over all R communication rounds. Thus, the complexity is
exponential in R ≈ 2/ (δε2); on the other hand, it has no dependence on n.
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4.3 Analysis

Our goal is to show that the message sequence in the simulated protocol is statistically
indistinguishable from the sequence in the ideal protocol, for some reasonable sample size

K. Here ‘reasonable’, unfortunately, is still quite huge: of order (11/ε)R2

/ζ2, where ζ is
the maximum bias with which a referee can distinguish the conversations. So assuming
ε ≥ ε/50 and R ≤ 2/ (δε2), the total number of computational steps is of order

(
(11/ε)R2

R2

)R

(T1 + T2) = exp

(
8 ln (550/ε)

δ3ε6
+

4 ln (1/ζ)

δε2

)
(T1 + T2) .

The reader might complain that this bound is not at all reasonable: for example, if ε =
δ = 1/2, then it translates into more than 236864 subroutine calls! Let us make two points
in response. First, we do show that the number of subroutine calls needed is independent
of n, and that it grows “only” exponentially in a polynomial in 1/δ and 1/ε. Theoretical
computer scientists often see cases in which the first polynomial-time algorithm for a problem
has a completely impractical complexity, say n40. However, once the problem is known to be
in polynomial time, it is usually possible to reduce the exponent to obtain a truly practical
algorithm. In our case, we conjecture that the factor of 1/ (δ3ε6) in the exponent could be
reduced to 1/ (δ2ε4) or even 1/ (δε2); certainly the constants in the exponent can be reduced.
The second point is that the complexity is so large only because we never assumed the agents
can sample from their sets of possible states conditioned on messages exchanged. So the
best they can do is to sample a huge number of states from their original sets ΩA and ΩB,
then retain the few that are compatible with the messages. However, it seems likely that
agents would have at least some ability to sample conditioned on messages. After all, we
assumed that they enter the conversation with the ability to sample, and presumably they
have had other conversations in the past! In practice, then, the complexity will probably
be better than the worst-case estimate above.

How do we prove the simulation theorem? In one sense, the proof is ‘merely’ an exercise
in error analysis and large deviation bounds. However, the details are extremely subtle and
difficult to get right. The problem is that if a message has probability q from its recipient’s
point of view, then order 1/q samples are needed to find even a single input that could
have caused the sender to produce that message. Fortunately, low-probability messages are
unlikely to be sent, for almost tautological reasons that we spell out in Lemma 14. However,
because the sample trees Ti are so large, with overwhelming probability they contain some
nodes v with miniscule values of 〈qt (v)〉i. We need to argue that the errors introduced by
these “bad nodes” are washed out by the good nodes before they can propagate to the root.

The proof will repeatedly use the Chernoff-Hoeffding bound (Theorem 2). As shown by
the following corollary, Theorem 2 sometimes lets us estimate the mean of a random variable,
even if we cannot sample that variable directly.

Corollary 12 Let p1, . . . , pn and x1, . . . , xn belong to [0, 1], and let P = p1 + · · · + pn and
x = p1x1 + · · · + pnxn. If we choose K indices i (1) , . . . , i (K) uniformly at random from
{1, . . . , n}, then

Pr

[∣∣∣∣
pi(1)xi(1) + · · · + pi(K)xi(K)

pi(1) + · · ·+ pi(K)

− x

P

∣∣∣∣ > α

]
≤ 4e−α2(P/n)2K/2.
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Proof. Let

P̃ =
n

K

(
pi(1) + · · ·+ pi(K)

)
,

X̃ =
n

K

(
pi(1)xi(1) + · · · + pi(K)xi(K)

)
.

Then since X̃ ≤ P̃ ,

∣∣∣∣∣
X̃

P̃
− X

P

∣∣∣∣∣ =

∣∣∣X̃
(
P − P̃

)
− P̃

(
X − X̃

)∣∣∣
P̃P

≤

∣∣∣P̃ − P
∣∣∣

P
+

∣∣∣X̃ − X
∣∣∣

P
.

So

Pr

[∣∣∣∣∣
X̃

P̃
− X

P

∣∣∣∣∣ > α

]
≤ Pr

[∣∣∣P̃ − P
∣∣∣ > αP

2

]
+ Pr

[∣∣∣X̃ − X
∣∣∣ > αP

2

]
.

By Theorem 2,

Pr

[
K

n

∣∣∣P̃ − P
∣∣∣ > αP

2n
K

]
≤ 2e−α2(P/n)2K/2

and similarly for
∣∣∣X̃ − X

∣∣∣.
We will also need a bound for a sum of exponentially distributed variables, which can be

found in [7] for example.

Theorem 13 Let x1, . . . , xK ∈ [0,∞) be independent and exponentially distributed with
mean 1 (that is, Pr [xi ≥ x] = e−x). Then

Pr [x1 + · · · + xK ≥ (1 + α)K] ≤
(

eα

1 + α

)−K

.

For convenience, we will state our results in terms of Alice’s tree TA, with the under-
standing that they apply equally well to TB. Throughout, we assume that t is even and
that the tth message mt is sent from Bob to Alice. Let Qt =

∑
Y ∈ΩA(ω) qt (Y ) measure the

“likelihood” of Alice’s situation at step t. Then Qt/Qt−2 measures the likelihood of the tth

message, conditioned on Alice’s situation just before she receives it. The following lemma
says essentially that “unlikely messages are unlikely.”

Lemma 14 For all inputs x of Alice, message sequences Mt−1, and constants γ > 0,

Pr
mt

[
Qt

Qt−2
≤ γε

2

]
< γ.

Proof. For all m ∈ [−ε, 1 + ε],

Pr [mt = m] =
∑

j∈{−L,...,L}

(
Pr
Y

[
round (EB,t−1 (Y )) = m + 2−bj

]
· ∆
(
m, m + 2−bj

)

L

)

=
1

L

∑
Y ∈ΩA(ω) qt−2 (Y )∆ (m, EB,t−1 (Y ))

∑
Y ∈ΩA(ω) qt−2 (Y )

=
1

L

Qt

Qt−2
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from Alice’s point of view. So it suffices to observe that

Pr
m

[
Pr
mt

[mt = m] ≤ γε

2L

]
≤ γε

2L

L (1 + 2ε) + ε

ε
< γ.

Here the first inequality follows from elementary probability theory, together with the fact
that there are at most (1 + 2ε) /2−b + 1 possible messages m, and hence the mean of
Prmt [mt = m] over m chosen uniformly at random is at least

1

(1 + 2ε) /2−b + 1
=

ε

L (1 + 2ε) + ε
.

The second inequality follows since ε < 1/4.
A consequence of Lemma 14 is that unlikely sequences of messages are unlikely. For the

remainder of this section, let g = 4e
ε

ln K.

Lemma 15 For all γ > 0 and all x,

Pr
y,Mt

[Qt ≤ γ] < gt/2 max

{
γ,

1

K

}
.

Proof. For all u ∈ {2, 4, . . . , t}, let xu = ln (εQu−2/2Qu). Then

Qt =
2Qt

εQt−2

2Qt−2

εQt−4
· · · 2Q2

εQ0

( ε

2

)t/2

= e−x2−x4−···−xt

( ε

2

)t/2

since Q0 = 1. Furthermore, Lemma 14 implies that for each u,

Pr [xu ≥ x] = Pr
mu

[
Qu

Qu−2
≤ e−xε

2

]
< e−x,

even conditioned on x2, . . . , xu−2. Therefore x2 + · · · + xt is stochastically dominated by a
sum of t/2 independent exponential variables each with mean 1. So by Theorem 13,

Pr

[
x2 + · · · + xt ≥ (1 + α)

t

2

]
<

(
eα

1 + α

)−t/2

.

Setting γ = e−(1+α)t/2 (ε/2)t/2 and solving to obtain α = (2/t) ln
(
(ε/2)t/2 /γ

)
− 1, it follows

that

Pr
y,Mt

[Qt ≤ γ] <


 e(2/t) ln((ε/2)t/2/γ)−1

(2/t) ln
(
(ε/2)t/2 /γ

)




−t/2

<

(
4e

ε
ln

1

γ

)t/2

γ ≤ gt/2 max

{
γ,

1

K

}
.

In the next four results, we fix a particular node v ∈ TA, then study how the error at
v depends on the errors at its children w ∈ S (v). For simplicity, we assume v is an even
distance from the root, but our results will apply equally to nodes an odd distance from the
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root. We need to upper-bound the expected difference between Alice’s actual expectation
〈EA,t (v)〉A, and her ideal expectation EA,t (Xv). To this end, it will be helpful to define the
following “hybrid” between 〈EA,t (v)〉A and EA,t (Xv):

E∗
A,t (v) =

∑
w∈S(v) qt (Yw) f (Yw)
∑

w∈S(v) qt (Yw)
.

To compute E∗
A,t, we use the ideal weights qt (Yw), but we average over Alice’s K sam-

ples {Yw}w∈S(v) only, not over all of ΩA (Xv). By the triangle inequality, to upper-bound

the quantity
∣∣〈EA,t (v)〉A − EA,t (Xv)

∣∣ it suffices to upper-bound
∣∣〈EA,t (v)〉A − E∗

A,t (v)
∣∣ and∣∣E∗

A,t (v) − EA,t (Xv)
∣∣. We start with the latter.

Lemma 16

EX
y,Mt,S(v)

[∣∣E∗
A,t (v) − EA,t (Xv)

∣∣] ≤ 7gt/2+1

√
K

.

Proof. Assuming Qt = Q,

Pr
[∣∣E∗

A,t (v) − EA,t (Xv)
∣∣ ≥ ω

]
≤ 4e−ω2Q2K/2

by Corollary 12. Furthermore, since E∗
A,t (v) and EA,t (Xv) are in [0, 1], we have the trivial

but important bound
∣∣E∗

A,t (v) − EA,t (Xv)
∣∣ ≤ 1. Therefore

EX
[∣∣E∗

A,t (v) − EA,t (Xv)
∣∣] =

∫ 1

0

Pr
[∣∣E∗

A,t (v) − EA,t (Xv)
∣∣ ≥ y

]
dy

≤ 4

∫ 1

0

EX
Qt

[
e−y2Q2

t K/2
]
dy

= 4

∫ 1

0

∫ 1

0

Pr
[
e−y2Q2

t K/2 ≥ x
]
dxdy

= 4

∫ 1

0

∫ 1

0

Pr

[
Qt ≤

1

x

√
2

K
ln

1

y

]
dxdy

≤ 4

∫ 1

0

∫ 1

0

min

{
1, max

{
1

x

√
2

K
ln

1

y
,

1

K

}
gt/2

}
dxdy

≤ 4gt/2

(
1

K
+

∫ 1

0

∫ 1

0

min

{
g−t/2,

1

x

√
2

K
ln

1

y

}
dxdy

)

= 4gt/2

(
1

K
+

∫ 1

y=0

√
2

K
ln

1

y

(
xmin (y) +

∫ 1

x=xmin(y)

1

x
dx

)
dy

)

Here the fifth line uses Lemma 15, and

xmin (y) = gt/2

√
2

K
ln

1

y
.

By straightforward integral approximations, the last expression is at most 7gt/2+1/
√

K for
sufficiently large K.
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For each child w ∈ S (v), let

ηt (w) =
∑

u∈{1,3,...,t−1}

∣∣〈EB,u (w)〉A − EB,u (Yw)
∣∣

measure the total error in Alice’s estimates of EB,u (Yw), summed over all time steps u ≤ t.
The following proposition shows that to upper-bound the error in 〈qt (w)〉A, it suffices to
upper-bound ηt (w). For this proposition to hold, we need the function ∆ to have bounded
derivative. That is why we chose triangular instead of uniform noise when defining the
protocol.

Proposition 17

|〈qt (w)〉A − qt (Yw)| ≤ ηt (w)

ε
.

Proof. From the definition of ∆,

∣∣∆
(
mu+1, 〈EB,u (w)〉A

)
− ∆ (mu+1, EB,u (Yw))

∣∣ ≤ 1

ε

∣∣〈EB,u (w)〉A − EB,u (Yw)
∣∣ .

Furthermore, ∆
(
mu+1, 〈EB,u (w)〉A

)
and ∆ (mu+1, EB,u (Yw)) are both bounded in [0, 1]. It

follows that

|〈qt (w)〉A − qt (Yw)| =

∣∣∣∣∣
∏

u

∆
(
mu+1, 〈EB,u (w)〉A

)
−
∏

u

∆ (mu+1, EB,u (Yw))

∣∣∣∣∣

≤
∑

u

1

ε

∣∣〈EB,u (w)〉A − EB,u (Yw)
∣∣ =

ηt (w)

ε

where u ranges over {1, 3, . . . , t − 1}.
Now let

H =
∑

w∈S(v)

qt (Yw) ,

F =
∑

w∈S(v)

qt (Yw) f (Yw) ,

〈H〉A =
∑

w∈S(v)

〈qt (w)〉A ,

〈F 〉A =
∑

w∈S(v)

〈qt (w)〉A f (Yw) ,

so that E∗
A,t (v) = F/H and 〈EA,t (v)〉A = 〈F 〉A / 〈H〉A. Using Lemma 15, we can upper-

bound the probability that H is too much smaller than its mean value.

Corollary 18 For all γ > 0,

Pr
y,Mt,S(v)

[H ≤ γK] < 3gt/2 max

{
γ,

4 ln K

K

}
.
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Proof. By the principle of deferred decisions, we can think of each qt (Yw) as an indepen-
dent sample of a [0, 1] random variable with mean Qt. Then H is a sum of K such samples.
Setting Γ = max {2γ, 8 (ln K) /K}, by Lemma 15 we have

Pr
y,Mt

[Qt ≤ Γ] < 2gt/2 max

{
γ,

4 lnK

K

}
.

Furthermore, assuming Qt > Γ, Theorem 2 yields

Pr
S(v)

[H ≤ γK] ≤ exp

(
−Qt

(
1 − γ

Γ

)2 K

2

)
≤ e−ΓK/8 ≤ 1

K
.

The corollary now follows by the union bound.
The last piece of the puzzle is to upper-bound the difference between 〈EA,t (v)〉A and

E∗
A,t (v), using techniques similar to those of Lemma 16. Let η = EXw∈S(v) [ηt (w)] and

η̂ = EXy,Mt,TA
[η].

Lemma 19 Assuming η ≥ 1/K for all y, Mt, TA,

EX
y,Mt,TA

[∣∣〈EA,t (v)〉A − E∗
A,t (v)

∣∣] ≤ 18gt/2+1η̂.

Proof. Using the fact that 〈F 〉A ≤ 〈H〉A,

∣∣〈EA,t (v)〉A − E∗
A,t (v)

∣∣ =

∣∣∣∣
〈F 〉A
〈H〉A

− F

H

∣∣∣∣ ≤
|〈H〉A − H|

H
+

|〈F 〉A − F |
H

by the same trick as in Corollary 12. Furthermore, it follows from Proposition 17 together
with the triangle inequality that |〈H〉A − H| ≤ ηK/ε and |〈F 〉A − F | ≤ ηK/ε. So we can
upper-bound

∣∣〈EA,t (v)〉A − E∗
A,t (v)

∣∣ by 2ηK/ (εH), as well as (of course) by 1. Fix η; then

EX
H

[
min

{
1,

2ηK

εH

}]
=

∫ 1

0

Pr
H

[
2ηK

εH
≥ x

]
dx

≤
∫ 1

0

min

{
1, 3 max

{
2η

εx
,
4 lnK

K

}
gt/2

}
dx

≤ 3gt/2

(
4 lnK

K
+

∫ 1

0

min

{
1

3gt/2
,
2η

εx

}
dx

)

= 3gt/2

(
4 ln K

K
+

xmin

3gt/2
+

∫ 1

xmin

2η

εx
dx

)

where the second line uses Corollary 18 and xmin = (6η/ε) gt/2. This in turn is at most

3gt/2

(
4 lnK

K
+

2η

ε
ln

1

η

)
.

Assuming η ≥ 1/K always, the expectation of the above quantity over η is at most 18gt/2+1η̂.

We are finally ready to put everything together, and show that the referee can distinguish
the real and ideal conversations with bias at most ζ.
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Theorem 20 By setting b = dlog2 R/ (ζε)e + 2 and K = O
(
(11/ε)R2

/ζ2
)
, it is possible to

achieve ∣∣∣∣ Pr
ω∈D,M∈W(ω)

[Φ (ω, MR) = 1] − Pr
ω∈D,M∈B(ω)

[Φ (ω, MR) = 1]

∣∣∣∣ ≤ ζ

for all Boolean functions Φ.

Proof. Combining Lemmas 16 and 19,

EX
y,Mt,TA

[∣∣〈EA,t (v)〉A − EA,t (Xv)
∣∣] ≤ gt/2+1

(
7√
K

+ 18η̂

)
.

Let Lj be the set of nodes at the jth level of Alice’s tree TA. Then if j is even, let

λj = EX
v∈Lj


 ∑

t∈{j,j+2,...,R}

EX
y,Mt,TA

[∣∣〈EA,t (v)〉A − EA,t (Xv)
∣∣]

 ,

λj+1 = EX
w∈Lj+1


 ∑

t∈{j+1,j+3,...,R−1}

EX
y,Mt,TA

[∣∣〈EB,t (w)〉A − EB,t (Yw)
∣∣]

 .

By linearity of expectation,

λj ≤
(

R

2
+ 1

)
gR/2+1

(
7√
K

+ 18λj+1

)
.

Solving this recurrence relation, we find that at the root node,

λ0 ≤ (9R + 18)R gR2/2+R 7√
K

,

and similarly for the root of Bob’s tree TB. So in particular, EXω,MR,Ti
[∂t] ≤ λ0 + 2−b+1 for

all i, t, where
∂t =

∣∣round
(
〈Ei,t (rooti)〉i

)
− round (Ei,t (ω))

∣∣ .
Now observe that, if we let Wt+1 be the distribution over message mt+1 in the wannabe case,
and let Bt+1 be the distribution in the unbounded Bayesian case, then

‖Wt+1 − Bt+1‖1 =
1

2

∂t/2−b∑

r=1

2 (L − r + 1)

L2
≤ ∂t/2−b

L
=

∂t

ε

where ‖ ‖1 denotes variation distance. So the referee can distinguish the whole conversations
with bias at most

1

ε
EX [∂0 + · · · + ∂R−1] ≤

1

ε

(
λ0 + 2−b+1

)
R
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since variation distance satisfies the triangle inequality. Therefore, we can achieve the goal
of simulation by taking λ0 ≤ ζε/R − 2−b+1 ≤ ζε/2R, or equivalently

K =
196R2

ζ2ε2
(9R + 18)2R

(
4e

ε

)R2+2R
(

ln

(
196R2

ζ2ε2
(9R + 18)2R

(
4e

ε

)R2+2R
))2R

= O

(
1

ζ2

(
11

ε

)R2
)

.

5 Open Problems

“We publish this observation with some diffidence, since once one has the ap-
propriate framework, it is mathematically trivial. Intuitively, though, it is not
quite obvious. . . ” —Aumann [2], on his original agreement result

This paper has studied agreement protocols from the quantitative perspective of theoreti-
cal computer science. If nothing else, we hope to have shown that adopting that perspective
leads to rich mathematical questions. Here are a few of the more interesting open problems
raised by our results:

• How tight is our O (1/ (δε2)) upper bound? Can we improve Theorem 6 to show
that the discretized standard protocol uses only O (1/ε2) messages, independently of
δ? More importantly, is there a scenario where Alice and Bob must exchange Ω (1/ε)
or Ω (1/ε2) bits to (ε, 1/2)-agree, regardless of what protocol they use? Recall that
the best lower bound we currently know is Ω (log 1/ε), from Proposition 3.

• Can Alice and Bob (ε, δ)-agree after a small number of steps, even if the “true” dis-
tribution over ω differs from their shared prior distribution D? Or is there a scenario
where regardless of what protocol they use, there exists a state ω for which they must
exchange Ω (n) bits to agree within ε on ω? (It is easy to construct a scenario where
the discretized standard protocol needs Ω (n) bits for some ω.)

• Can the simulation procedure of Section 4.2 be made practical? That is, can we

reduce the number of subroutine calls to (say) c1/(δε2), or even to a polynomial in 1/δ
and 1/ε? Alternatively, can we prove a lower bound showing that such reductions are
impossible?

• Can we obtain a better simulation procedure if D is represented in a compact form,
for example a graphical model?
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