NOTE Communicated by Andrew Barto

Learning Tetris Using the Noisy Cross-Entropy Method

Istvan Szita

szityu@eotvos.elte.hu

Andras Lérincz

andras.lorincz@elte.hu

Department of Information Systems, Eotvos Lordnd University, Budapest, Hungary
H-1117

The cross-entropy method is an efficient and general optimization algo-
rithm. However, its applicability in reinforcement learning (RL) seems
to be limited because it often converges to suboptimal policies. We ap-
ply noise for preventing early convergence of the cross-entropy method,
using Tetris, a computer game, for demonstration. The resulting policy
outperforms previous RL algorithms by almost two orders of magnitude.

1 Introduction

Tetris is one of the most popular computer games (see, e.g., Fahey, 2003).
Despite its simple rules, playing the game well requires a complex strat-
egy and lots of practice. Furthermore, Demaine, Hohenberger, and Liben-
Nowell (2003) have shown that Tetris is hard in a mathematical sense as
well. Finding the optimal strategy is NP-hard even if the sequence of tetro-
minoes is known in advance. These properties make Tetris an appealing
benchmark problem for testing reinforcement learning (and other machine
learning) algorithms.

Reinforcement learning (RL) algorithms are quite effective in solving
a variety of complex sequential decision problems. Despite this, RL ap-
proaches tried to date on Tetris show surprisingly poor performance.
The aim of this note is to show how to improve RL for this hard com-
binatorial problem. In this article, we put forth a modified version of
the cross-entropy (CE) method (de Boer, Kroese, Mannor, & Rubinstein,
2004).

2 Applying the Cross-Entropy Method to Tetris

2.1 Value Function and Action Selection. Following the approach in
Bertsekas and Tsitsiklis (1996), we shall learn state-value functions that are
linear combination of several basis functions. We use 22 such basis functions:
maximal column height, individual column heights, differences of column
heights, and the number of holes. More formally, if s denotes a Tetris state

Neural Computation 18, 2936-2941 (2006) ~ © 2006 Massachusetts Institute of Technology

120z ¥snbny G| uo 3sanb Aq Jpd-9e62°Z L 81 9002 099U/L G991 8/9E62/C /81 /HPd-8]01lE/008U/NPa)W }dR.IP//:dRY WOl papeojumo]

Learning Tetris Using the Noisy Cross-Entropy Method 2937

and ¢;(s) is the value of basis function i in this state, then according to
weight vector w, the value of state s is

22
V() == 3 widi(s). 2.1)

i=1

During a game, the actual tetromino is test-placed in every legal posi-
tion, and after erasing full rows (if any), the value of the resulting state is
calculated according to V,,. Finally, we choose the column and direction
with the highest value.

2.2 The Cross-Entropy Method. The cross-entropy (CE) method is a
general algorithm for (approximately) solving global optimization tasks of
the form

w* = arg max S(w), (2.2)

where S is a general real-valued objective function, with an optimum value
y* = S(w*). The main idea of CE is to maintain a distribution of possible
solutions and update this distribution at each step (de Boer et al., 2004).
Here a very brief overview is provided.

The CE method starts with a parametric family of probability distri-
butions F and an initial distribution fy € . Under this distribution, the
probability of drawing a high-valued sample (having value near y*) is
presumably very low; therefore, finding such samples by naive sampling
is intractable. For any y € R, let g, be the uniform distribution over
the set {w : S(w) > y}. If one finds the distribution f; € F closest to g-,
with regard to the cross-entropy measure, then f; can be replaced by
f1 and y-valued samples will have larger probabilities. For many distri-
bution families, the parameters of f; can be estimated from samples of
fo. This estimation is tractable if the probability of the y-level set is not
very low with regard to fo. Instead of the direct computation of the F-
distribution closest to g-,+, we can proceed iteratively. We select a yy ap-
propriate for fy, update the distribution parameters to obtain fi, select y;,
and so on, until we reach a sufficiently large y. Below we sketch the spe-
cial case when w is sampled from a member of the gaussian distribution
family.

Let the distribution of the parameter vector at iteration ¢ be f; ~
N(ut, 07). After drawing n sample vectors wy, ..., w, and obtaining their
value S(w1), ..., S(w,), we select the best | p - 1] samples, where 0 < p < 1
is the selection ratio. This is equivalent to setting y; = S(w|,.,j). Denoting
the set of indices of the selected samples by I C {1, 2, ..., n}, the mean and

120z ¥snbny G| uo 3sanb Aq Jpd-9e62°Z L 81 9002 099U/L G991 8/9E62/C /81 /HPd-8]01lE/008U/NPa)W }dR.IP//:dRY WOl papeojumo]

2938 1. Szita and A. L8rincz

the deviation of the distribution is updated using

. Wi
Hty1 = Zle[l (2.3)
1]
and
A T(w): —
0t2+1 — Zle[(wl /“Lt|+11|) (wl /JLH*I). (24)

2.3 The Cross-Entropy Method and Reinforcement Learning. Appli-
cations of the CE method to RL include the parameter tuning of radial basis
functions (Menache, Mannor, & Shimkin, 2005) and adaptation of a param-
eterized policy (Mannor, Rubinstein, & Gat, 2003). We apply CE to learn the
weights of the basis functions, drawing each weight from an independent
gaussian distribution.

2.4 Preventing Early Convergence. Preliminary investigations showed
that applicability of CE to RL problems is restricted severely by the phe-
nomenon that the distribution concentrates to a single point too fast. To
prevent this, we adapt a trick frequently used in particle filtering: at each it-
eration, we add some extra noise to the distribution: instead of equation 2.4,
we use

T
(Wi — wi — W1
Ut2+l — Dicr(wi t|+11|) (w t+1) + Zon, (2.5)

where Z;, is a constant vector depending only on ¢.

3 Experiments

In the experiments we used the standard Tetris game described in Bertsekas
and Tsitsiklis (1996), scoring 1 point for each cleared row. Each parameter
had an initial distribution of N(0, 100). We set n = 100 and p = 0.1. Each
drawn sample was evaluated by playing a single game using the corre-
sponding value function. After each iteration, we updated distribution pa-
rameters using equations 2.3 and 2.5 and evaluated the mean performance
of the learned parameters. This was accomplished by playing 30 games us-
ing V,,,, and averaging the results. (The large number of evaluation games
was necessary because Tetris strategies have large performance deviations;
Fahey, 2003.)

In experiment 1 we tested the original CE method (corresponding to Z; =
0). As expected, deviations converge to 0 too fast, so the mean performance
settles at about 20,000 points. In experiment 2 we used a constant noise rate

120z ¥snbny G| uo 3sanb Aq Jpd-9e62°Z L 81 9002 099U/L G991 8/9E62/C /81 /HPd-8]01lE/008U/NPa)W }dR.IP//:dRY WOl papeojumo]

Learning Tetris Using the Noisy Cross-Entropy Method 2939

10
g 10
£
e)
o
3]
@
&)
107
——CE, no noise
—CE, constant noise
—CE, decreasing noise
0 20 40 60 80

Episode

Figure 1: Tetris scores on logarithmic scale. Mean performance of 30 evalua-
tions versus iteration number. Error bars denoting 95% confidence intervals are
shown on one of the curves.

of Z; = 4, raising mean performance to a 70,000 point level. Our analysis
showed that further improvement was counteracted by the amount of noise,
which was too high, and thus prevented convergence of the distributions.
Therefore, in experiment 3, we applied a decreasing amount of noise, Z; =
max(5 — lt—o, 0). With this setting, average score exceeded 300,000 points
by the end of episode 50, and the best score exceeded 800,000 points. In
experiments 2 and 3, noise parameters were selected in an ad hoc manner,
and no optimization was carried out. Results are summarized in Figure 1
and in Table 1.

Assuming an exponential score distribution (Fahey, 2003), we calculated
the 95% confidence intervals of the mean. For better visibility, confidence
intervals have been plotted only for experiment 3.

Learning took more than one month of CPU time on a 1 GHz machine
using Matlab. The main reason for the long learning course is the fact that for
Tetris, evaluation time of the value function scales linearly with the score,
and the score is very noisy.! Related to this, the computational overhead of
the CE method is negligibly small.

Because of the large running times, experiments consisted of only a single
training run. However, preliminary results on simplified Tetris problems
show that over multiple trials, the method consistently converges to the
same region.

1Tt is conjectured that the length of a game can be approximated from its starting
sequence (Fahey, 2003), which could reduce evaluation time considerably.

120z ¥snbny G| uo 3sanb Aq Jpd-9e62°Z L 81 9002 099U/L G991 8/9E62/C /81 /HPd-8]01lE/008U/NPa)W }dR.IP//:dRY WOl papeojumo]

2940 1. Szita and A. L8rincz

Table 1: Average Tetris Scores of Various Algorithms.

Method Mean Score Reference

Nonreinforcement learning

Hand-coded 631,167 Dellacherie (Fahey, 2003)
Genetic algorithm 586,103 (Bohm et al., 2004)
Reinforcement learning
Relational reinforcement ~50 Ramon and Driessens (2004)
learning+kernel-based regression
Policy iteration 3183 Bertsekas and Tsitsiklis (1996)
Least squares policy iteration <3000 Lagoudakis, Parr, and
Littman (2002)
Linear programming + Bootstrap 4274 Farias and van Roy (2006)
Natural policy gradient ~6800 Kakade (2001)
CE+RL 21,252
CE+RL, constant noise 72,705
CE+RL, decreasing noise 348,895

3.1 Comparison to Previous Work. Tetris has been chosen as a bench-
mark problem by many researchers to test their RL algorithms. Table 1
summarizes results known to us, comparing them to our algorithm and to
two state-of-the-art non-RL algorithms as well.

The comparison shows that our method improves on the performance
of the best RL algorithm by almost two orders of magnitude and gets close
to the best non-RL algorithms (Fahey, 2003; Bohm, Kékai, & Mandl, 2004).

We think that by applying the performance enhancement tech-
niques in Bohm et al. (2004)—more basis functions, exponential value
function—further significant improvement is possible.

References

Bertsekas, D. P, & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Nashua, NH:
Athena Scientific.

Bohm, N., Kékai, G., & Mand], S. (2004). Evolving a heuristic function for the
game of Tetris. In T. Scheffer (Ed.), Proc. Lernen, Wissensentdeckung und Adaptivitit
LWA—2004 (pp. 118-122). Berlin.

de Boer, P, Kroese, D., Mannor, S., & Rubinstein, R. (2004). A tutorial on the cross-
entropy method. Annals of Operations Research, 134(1), 19-67.

Demaine, E. D., Hohenberger, S., & Liben-Nowell, D. (2003). Tetris is hard, even
to approximate. In Proc. 9th International Computing and Combinatorics Conference
(COCOON 2003) (pp. 351-363). Berlin: Springer.

Fahey, C. P. (2003). Tetris Al. Available online at http://www.colinfahey.com

Farias, V. F.,, & van Roy, B. (2006). Tetris: A study of randomized constraint sampling. In
G. Calafiore & F. Dabbene (Eds.), Probabilistic and randomized methods for design
under uncertainty. Berlin: Springer-Verlag.

120z ¥snbny G| uo 3sanb Aq Jpd-9e62°Z L 81 9002 099U/L G991 8/9E62/C /81 /HPd-8]01lE/008U/NPa)W }dR.IP//:dRY WOl papeojumo]

Learning Tetris Using the Noisy Cross-Entropy Method 2941

Kakade, S. (2001). A natural policy gradient. In T. G. Dietterich, S. Becker, &
Z. Ghahramani (Eds.), Advances in neural information processing systems, 14
(pp- 1531-1538). Cambridge, MA: MIT Press.

Lagoudakis, M. G., Parr, R., & Littman, M. L. (2002). Least-squares methods in
reinforcement learning for control. In SETN 02: Proceedings of the Second Hellenic
Conference on Al (pp. 249-260). Berlin: Springer-Verlag.

Mannor, S., Rubinstein, R. Y., & Gat, Y. (2003). The cross-entropy method for
fast policy search. In Proc. International Conf. on Machine Learning (ICML 2003),
(pp. 512-519). Menlo Park, CA: AAAI Press.

Menache, 1., Mannor, S., & Shimkin, N. (2005). Basis function adaption in temporal
difference reinforcement learning. Annals of Operations Research, 134(1), 215-238.

Ramon, J., & Driessens, K. (2004). On the numeric stability of gaussian processes
regression for relational reinforcement learning. In ICML-2004 Workshop on Rela-
tional Reinforcement Learning (pp. 10-14). N.p.: Omni press.

Received October 3, 2005; accepted May 15, 2006.

120z ¥snbny G| uo 3sanb Aq Jpd-9e62°Z L 81 9002 099U/L G991 8/9E62/C /81 /HPd-8]01lE/008U/NPa)W }dR.IP//:dRY WOl papeojumo]

