
Neural Algorithmic Reasoning

Petar Veličković and Charles Blundell

DeepMind

Abstract

Algorithms have been fundamental to recent global technological advances
and, in particular, they have been the cornerstone of technical advances
in one field rapidly being applied to another. We argue that algorithms
possess fundamentally different qualities to deep learning methods, and
this strongly suggests that, were deep learning methods better able to
mimic algorithms, generalisation of the sort seen with algorithms would
become possible with deep learning—something far out of the reach of
current machine learning methods. Furthermore, by representing elements
in a continuous space of learnt algorithms, neural networks are able to
adapt known algorithms more closely to real-world problems, potentially
finding more efficient and pragmatic solutions than those proposed by
human computer scientists.

Here we present neural algorithmic reasoning—the art of building neu-
ral networks that are able to execute algorithmic computation—and pro-
vide our opinion on its transformative potential for running classical al-
gorithms on inputs previously considered inaccessible to them.

Algorithms and Deep Learning Algorithms are pervasive in modern society—
from elevators, microwave ovens and other household equipment to procedures
for electing government officials. Algorithms allow us to automate and engineer
systems that reason. Remarkably, algorithms applied in one domain—such as
a microwave oven—may be slightly adjusted and deployed in a completely dif-
ferent domain—such as a heart pacemaker (e.g., a control algorithm such as
PID). That is not to say that you would expect to be able to safely run a mi-
crowave oven using a pacemaker (or vice versa) without modification, but the
same recipe underlies both constructions.

An undergraduate textbook on algorithms [Cormen et al., 2009] will cover
fewer than 60 distinct algorithms. A subset of these will serve as the useful basis
for someone’s life-long career in software engineering in almost any domain. Part
of the skill of a software engineer lies in choosing which algorithm to use, when,
and in combination with what else. Only rarely will an entirely novel algorithm
be warranted.

This same algorithmic basis could also help us solve one of the hardest prob-
lems in deep learning: generalisation. Deep learning methods learn from data
and are then deployed to make predictions or decisions. The core generalisation

1

ar
X

iv
:2

10
5.

02
76

1v
1 

 [
cs

.L
G

] 
 6

 M
ay

 2
02

1



concern is: will it work in a new situation? In other words, from training data,
will the deep learning method generalise to the new situation. Under certain
assumptions, guarantees can be given but so far these are in simple cases.

Algorithms, on the other hand, typically come with strong general guaran-
tees. The invariances of an algorithm can be stated as a precondition and a
postcondition, combined with how the time and space complexity scales with
input size. The precondition states what the algorithm will assume is true about
its inputs, and the post-condition will state what the algorithm can then guar-
antee about its outputs after its execution. For example, the precondition of a
sorting algorithm may specify what kind of input it expects (e.g., a finite list of
integers allocated in memory it can modify) and then the postcondition might
state that after execution, the input memory location contains the same integers
but in ascending order.

Even with something as elementary as sorting, neural networks cannot pro-
vide guarantees of this kind: neural networks can be demonstrated to work on
certain problem instances and to generalise to certain larger instances than were
in the training data. There is no guarantee they will work for all problem sizes,
unlike good sorting algorithms, nor even on all inputs of a certain size.

Algorithms and the predictions or decisions learnt by deep learning have very
different properties—the former provide strong guarantees but are inflexible to
the problem being tackled, whilst the latter provide few guarantees but can
adapt to a wide range of problems. Understandably, work has considered how
to get the best of both. Induction of algorithms from data will have significant
implications in computer science: better approximations to intractable prob-
lems, previously intractable problems shown to be tractable in practice, and
algorithms that can be optimised directly for the hardware that is executing
them with little or no human intervention.

Already several approaches have been explored for combining deep learning
and algorithms. Inspired by deep reinforcement learning, deep learning meth-
ods can be trained to use existing, known algorithms as fixed external tools
[Reed and De Freitas, 2015, Li et al., 2020]. This very promising approach
works well—when the existing known algorithms fit the problem at hand. This
is somewhat reminiscent of the software engineer wiring together a collection of
known algorithms. An alternative approach is to teach deep neural networks to
imitate the workings of an existing algorithm, by producing the same output,
and in the strongest case by replicating the same intermediate steps [Graves
et al., 2014, Kaiser and Sutskever, 2015, Kurach et al., 2015, Veličković et al.,
2020]. In this form, the algorithm itself is encoded directly into the neural
network before it is executed. This more fluid representation of the algorithm
allows learning to adapt the internal mechanisms of the algorithm itself via feed-
back from data. Furthermore, a single network may be taught multiple known
algorithms and abstract commonalities among them [Veličković et al., 2019],
allowing novel algorithms to be derived. Both of these approaches build atop
known algorithms. In the former case, new combinations of existing algorithms
can be learnt. Excitingly, in the latter case, new variants or adaptations of
algorithms can be learnt, as the deep neural network is more malleable than the

2



original algorithm.
At present, in computer science, a real world problem is solved by first

fitting the problem to a known class of problems (such as sorting all numbers),
and then an appropriate algorithm chosen for this known problem class. This
known problem class may actually be larger than that exhibited by the real
world problem, and so the chosen algorithm may be suboptimal in practice (for
example, the known problem class may be NP-hard, but all real world examples
are actually in P, so can be solved in polynomial time). Instead, by combining
deep learning and algorithms together, an algorithm can be fit directly to the
real world problem, without the need for the intermediate proxy problem.

Algorithms in the real world To elaborate on how neural networks can
more directly be fused with algorithmic computation, we will take a step back
and consider the theoretical motivation for designing algorithms.

Algorithms can represent the purest form of problem-solving. The Church-
Turing thesis states that a problem of any kind is computationally solvable
if and only if there exists an algorithm that solves it when executed on the
model of computation known as a Turing machine. Thus, solvability of problems
necessitates existence of suitable algorithms for them.

Algorithms reason about problems in an abstract space, where the inputs
conform to stringent pre-conditions. Under this lens, it becomes far easier to
guarantee correctness (in the form of stringent post-conditions), provide perfor-
mance guarantees, support elegant and interpretable pseudocode, and perhaps
most importantly, draw clear connections between problems that may be oth-
erwise hard to relate.

The theoretical utility of algorithms is unfortunately at timeless odds with
the practical motivation for designing them: to apply them to real-world prob-
lems. Clear examples of both the appeal of algorithmic reasoning and the ap-
parent dissonance it has with practical applications were known as early as
1955—within a write-up from Harris and Ross [Harris and Ross, 1955], which
studied the bottleneck properties of railway networks.

By studying the problem in an abstract space (railway junctions being nodes
in a graph, and edges between them endowed with scalar capacities, specifying
the limits of traffic flow along edges), the authors formalised the bottleneck
finding task as a minimum-cut problem. Observing the problem in this abstract
space made it easily relatable to the (otherwise seemingly unrelated) maximum-
flow problem. In fact, studying the problem under this lens not only enabled a
strong theoretical connection between these two problems, it also spearheaded
decades of research into efficient algorithms in flow networks.

However, there is a fundamental limitation to this kind of abstraction. In
order for all of the above to be applicable, we need to “compress” all of the
complexity of the real-world railway network into single-scalar capacities for
every edge. And, as the authors themselves remark:

“The evaluation of both railway system and individual track capac-
ities is, to a considerable extent, an art. The authors know of no

3



tested mathematical model or formula that includes all of the varia-
tions and imponderables that must be weighed.* Even when the in-
dividual has been closely associated with the particular territory he
is evaluating, the final answer, however accurate, is largely one of
judgment and experience.”

This remark may be of little importance to the theoretical computer scientist,
but it has strong implications on applying classical algorithms on natural in-
puts, that hold to this day. If data is manually converted from raw to abstract
form, this often implies drastic information loss, making our problem no longer
accurately portray the dynamics of the real world. Hence the algorithm will give
a perfect solution, but in a potentially useless setup. Even more fundamentally,
the data we need to apply the algorithm may be only partially observable—in
which case, the algorithm could even be rendered inapplicable.

In order to circumvent this issue, we may recall that the “deep learning
revolution” occurred with neural networks replacing the use of manual feature
extractors from raw data, causing significant gains in performance. Accord-
ingly, as our issues stem from manually converting complex natural inputs to
algorithmic inputs, we propose applying neural networks in this setting as well.

Algorithmic bottlenecks and neural algorithm execution Directly pre-
dicting the algorithmic inputs from raw data often gives rise to a very peculiar
kind of bottleneck. Namely, the richness of the real world (e.g. noisy real-time
traffic data) still needs to be compressed into scalar values (e.g. edge weights
in a path-finding problem). The algorithmic solver then commits to using these
values and assumes they are free of error—hence, if we don’t have sufficient
data to estimate these scalars properly, the resulting environment where the
algorithm is executed does not accurately portray the real-world problem, and
results may be suboptimal, especially for low data setups.

To break the algorithmic bottleneck, it would be preferential to have our
neural network consistently producing high-dimensional representations. This
means that the computations of our algorithm also must be made to operate
over high-dimensional spaces. The most straightforward way to achieve this
is replacing the algorithm itself with a neural network—one which mimics the
algorithm’s operations in this latent space, such that the desirable outputs are
decodable from those latents. The recently resurging area of algorithmic rea-
soning [Cappart et al., 2021, Section 3.3.] exactly studies the ways in which
such algorithmically-inspired neural networks can be built, primarily through
learning to execute the algorithm from abstractified inputs.

Algorithmic reasoning provides methods to train useful processor networks,
such that within their parameters we find a combinatorial algorithm that is
(a) aligned with the computations of the target algorithm; (b) operates by
matrix multiplications, hence natively admits useful gradients; (c) operates over
high-dimensional latent spaces, hence is not vulnerable to bottleneck phenomena
and may be more data-efficient.

4



x̄

0

+∞

+∞

+∞

+∞

6

7

5

−2

−
4

9

7

2

−3

Abstract inputs

Processor

Processor

A(x̄)

0

2

7

4

−2

6

7

5

−2

−
4

9

7

2

−3

Abstract outputs

x

Natural inputs

y

Natural outputs

f g

P

f̃ g̃

Figure 1: The blueprint of neural algorithmic reasoning. We assume that our
real-world problem requires learning a mapping from natural inputs, x, to natu-
ral outputs, y—for example, fastest-time routing based on real-time traffic infor-
mation. Note that natural inputs are often likely high-dimensional, noisy, and
prone to changing rapidly—as is often the case in the traffic example. Further,
we assume that solving our problem would benefit from applying an algorithm,
A—however, A only operates over abstract inputs, x̄. In this case, A could
be Dijkstra’s algorithm for shortest paths [Dijkstra et al., 1959], which oper-
ates over weighted graphs with exactly one scalar weight per node, producing
the shortest path tree. First, an algorithmic reasoner is trained to imitate A,
learning a function g(P (f(x̄))), optimising it to be close to ground-truth ab-
stract outputs, A(x̄). P is a processor network operating in a high-dimensional
latent space, which, if trained correctly, will be able to imitate the individual
steps of A. f and g are encoder and decoder networks, respectively, designed
to carry abstract data to and from P ’s latent input space. Once trained, we
can replace f and g with f̃ and g̃—encoders and decoders designed to process
natural inputs into the latent space of P and decode P ’s representations into
natural outputs, respectively. Keeping P ’s parameters fixed, we can then learn
a function g̃(P (f̃(x))), allowing us an end-to-end differentiable function from
x to y, without any low-dimensional bottlenecks—hence it is a great target for
neural network optimisation.

5



The blueprint of neural algorithmic reasoning Having motivated the
use of neural algorithmic executors, we can now demonstrate an elegant neural
end-to-end pipeline which goes straight from raw inputs to general outputs,
while emulating an algorithm internally. The general procedure for applying
an algorithm A (which admits abstract inputs x̄) to raw inputs x is as follows
(following Figure 1):

1. Learn an algorithmic reasoner for A, by learning to execute it on syn-
thetically generated inputs, x̄. This yields functions f, P, g such that
g(P (f(x̄))) ≈ A(x̄). f and g are encoder/decoder functions, designed
to carry data to and from the latent space of P (the processor network).

2. Set up appropriate encoder and decoder neural networks, f̃ and g̃, to
process raw data and produce desirable outputs. The encoder should
produce embeddings that correspond to the input dimension of P , while
the decoder should operate over input embeddings that correspond to the
output dimension of P .

3. Swap out f and g for f̃ and g̃, and learn their parameters by gradient
descent on any differentiable loss function that compares g̃(P (f̃(x))) to
ground-truth outputs, y. The parameters of P should be kept frozen.

Through this pipeline, neural algorithmic reasoning offers a strong approach to
applying algorithms on natural inputs. The raw encoder function, f̃ , has the
potential to replace the human feature engineer, as it is learning how to map
raw inputs onto the algorithmic input space for P , purely by backpropagation.

One area where this blueprint had already proved useful is reinforcement
learning (RL). A very popular algorithm in this space is Value Iteration (VI)—it
is able to solve the RL problem perfectly, assuming access to environment-related
inputs that are usually hidden. Hence it would be highly attractive to be able
to apply VI over such environments, and also, given the partial observability of
the inputs necessary to apply VI, it is a prime target for our reasoning blueprint.

Specifically, the XLVIN architecture [Deac et al., 2020] is an exact instance
of our blueprint for the VI algorithm. Besides improved data efficiency over
more traditional approaches to RL, it also compared favourably against ATreeC
[Farquhar et al., 2017], which attempts to directly apply VI in a neural pipeline,
thus encountering the algorithmic bottleneck problem in low-data regimes.

Conclusion We demonstrated how neural algorithmic reasoning can form a
rich basis and core for learning novel and old algorithms alike. At first, algo-
rithmic reasoners can be bootstrapped from existing algorithms using supervi-
sion of their internal workings, and then subsequently embedded into the real
world input/outputs via separately trained encoding/decoding networks. Such
an approach has already proved fruitful across a range of domains, such as
reinforcement learning and genome assembly. It is our belief that neural al-
gorithmic reasoning will allow for applying classical algorithms on inputs that
substantially generalise the preconditions specified by their designers, uniting
the theoretical appeal of algorithms with their intended purpose.

6



References

Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Mor-
ris, and Petar Veličković. Combinatorial optimization and reasoning with
graph neural networks. arXiv preprint arXiv:2102.09544, 2021.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms. MIT press, 2009.

Andreea Deac, Petar Veličković, Ognjen Milinković, Pierre-Luc Bacon, Jian
Tang, and Mladen Nikolić. XLVIN: eXecuted Latent Value Iteration Nets.
arXiv preprint arXiv:2010.13146, 2020.

Edsger W Dijkstra et al. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

Gregory Farquhar, Tim Rocktäschel, Maximilian Igl, and Shimon Whiteson.
TreeQN and ATreeC: Differentiable tree-structured models for deep reinforce-
ment learning. arXiv preprint arXiv:1710.11417, 2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

TE Harris and FS Ross. Fundamentals of a method for evaluating rail net
capacities. Technical report, RAND CORP SANTA MONICA CA, 1955.

 Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint
arXiv:1511.08228, 2015.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access
machines. arXiv preprint arXiv:1511.06392, 2015.

Yujia Li, Felix Gimeno, Pushmeet Kohli, and Oriol Vinyals. Strong general-
ization and efficiency in neural programs. arXiv preprint arXiv:2007.03629,
2020.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv
preprint arXiv:1511.06279, 2015.

Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blun-
dell. Neural execution of graph algorithms. arXiv preprint arXiv:1910.10593,
2019.

Petar Veličković, Lars Buesing, Matthew C Overlan, Razvan Pascanu, Oriol
Vinyals, and Charles Blundell. Pointer Graph Networks. arXiv preprint
arXiv:2006.06380, 2020.

7


