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Abstract

Value Iteration Networks (VINs) have emerged as a popular method to perform
implicit planning within deep reinforcement learning, enabling performance im-
provements on tasks requiring long-range reasoning and understanding of envi-
ronment dynamics. This came with several limitations, however: the model is
not explicitly incentivised to perform meaningful planning computations, the un-
derlying state space is assumed to be discrete, and the Markov decision process
(MDP) is assumed fixed and known. We propose eXecuted Latent Value Itera-
tion Networks (XLVINs), which combine recent developments across contrastive
self-supervised learning, graph representation learning and neural algorithmic rea-
soning to alleviate all of the above limitations, successfully deploying VIN-style
models on generic environments. XLVINs match the performance of VIN-like
models when the underlying MDP is discrete, fixed and known, and provide sig-
nificant improvements to model-free baselines across three general MDP setups.

1 Introduction

Planning is an important aspect of reinforcement learning (RL) algorithms, and planning algorithms
are usually characterised by explicit modelling of the environment. Recently, several approaches
explore implicit planning (also called model-free planning) [41, 33, 36, 38, 32, 21, 20]. Instead of
training explicit environment models and leveraging planning algorithms, such approaches propose
inductive biases in the policy function to enable planning to emerge, while training the policy in a
model-free manner. A notable example of this line of research are value iteration networks (VINs),
which observe that the value iteration (VI) algorithm on a grid-world can be understood as a convo-
lution of state values and transition probabilities followed by max-pooling, which inspired the use
of a CNN-based VI module [41]. Generalized value iteration networks (GVINs), based on graph
kernels [50], lift the assumption that the environment is a grid-world and allow planning on irregular
discrete state spaces [32], such as graphs.

While such models can learn to perform VI, they are in no way constrained or explicitly incen-
tivised to do so. Policies including such planning modules might exploit their capacity for different
purposes, potentially finding ways to overfit the training data instead of learning how to perform
planning. Further, both VINs and GVINs assume discrete state spaces, incurring loss of information
for problems with naturally continuous state spaces. Finally, and most importantly, both approaches
require the graph specifying the underlying Markov decision process (MDP) to be known in advance
and are inapplicable if it is too large to be stored in memory, or in other ways inaccessible.

In this paper, we propose the eXecuted Latent Value Iteration Network (XLVIN), an implicit
planning policy network which embodies the computation of VIN-like models while addressing all
of the above issues. As a result, we are able to seamlessly run XLVINs with minimal configuration
changes on discrete-action environments from MDPs with known structure (such as grid-worlds),

Presented at Deep RL Workshop, NeurIPS 2020.

ar
X

iv
:2

01
0.

13
14

6v
2 

 [
cs

.L
G

] 
 6

 D
ec

 2
02

0



through pixel-based ones (such as Atari), all the way towards fully continuous-state environments,
consistently outperforming or matching baseline models which lack XLVIN’s inductive biases.

To achieve this, we have unified recent concepts from several areas of representation learning:

• Using contrastive self-supervised representation learning, we are able to meaningfully in-
fer dynamics of the MDP, even when it is not provided. In particular, we leverage the work
of [28, 43], which uses the TransE model [9] to embed states and actions into vector spaces,
in such a way that the effect of action embeddings onto the state embeddings are consistent
with the true environment dynamics.

• By applying recent advances in graph representation learning [6, 10, 25], we designed a
message passing architecture [18] which can traverse our partially-inferred MDP, without
imposing strong structural constraints (i.e., our model is not restricted to grid-worlds).

• We better align our planning module with VI by leveraging recent advances from neural
algorithm execution, which has shown that GNNs can learn polynomial-time graph algo-
rithms [48, 45, 49, 17, 44], by supervising them to structure their problem solving process
according to a target algorithm. Relevantly, it was shown that GNNs are capable of execut-
ing value iteration in supervised learning settings [11]. To the best of our knowledge, our
work represents the first implicit planning architecture powered by concepts from neural
algorithmic reasoning, expanding the application space of VIN-like models.

While we focus our discussion on VINs and GVINs, which we directly generalise and with which we
share key design concepts (like the VI-based differentiable planning module), there are other lines
of research that our approach could be linked to. Significant work has been done on representation
learning in RL [19, 14, 15, 27, 23, 16], often exploiting observed state similarities.

Regarding work in planning in latent spaces [33, 13, 24, 43], Value Prediction Networks [33] and
TreeQN [13] explore some ideas similar to our work, with important differences; they use explicit
planning algorithms, while XLVINs do fully implicit planning in the latent space. However, due
to the way in which value estimates are represented, the policy network is capable of melding both
model-free and model-based cues robustly. Furthermore, while our VI executor provides a repre-
sentation that aligns with the predictive needs of value iteration, it can also incorporate additional
information if it benefits the performance of the model.

2 Background

Value iteration Value iteration is a successive approximation method for finding the optimal value
function of a discounted Markov decision processes (MDPs) as the fixed-point of the so-called Bell-
man optimality operator [35]. A discounted MDP is a tuple (S,A, R, P, γ) where s ∈ S are states,
a ∈ A are actions, R : S × A → R is a reward function, P : S × A → Dist(S) is a tran-
sition function such that P (s′|s, a) is the conditional probability of transitioning to state s′ when
the agent executes action a in state s, and γ ∈ [0, 1] is a discount factor which trades off be-
tween the relevance of immediate and future rewards. In the infinite horizon discounted setting, an
agent sequentially chooses actions according to a stationary Markov policy π : S × A → [0, 1]
such that π(a|s) is a conditional probability distribution over actions given a state. The return
is defined as Gt =

∑∞
k=0 γ

kR(at+k, st+k). Value functions V π(s, a) = Eπ[Gt|st = s] and
Qπ(s, a) = Eπ[Gt|st = s, at = a] represent the expected return induced by a policy in an MDP
when conditioned on a state or state-action pair respectively. In the infinite horizon discounted set-
ting, we know that there exists an optimal stationary Markov policy π∗ such that for any policy π it
holds that V π

∗
(s) ≥ V π(s) for all s ∈ S . Furthermore, such optimal policy can be deterministic

– greedy – with respect to the optimal values. Therefore, in order to find a π∗ it suffices to find
the unique optimal value function V ? as the fixed-point of the Bellman optimality operator. Value
iteration is in fact the instantiation of the method of successive approximation method for finding
the fixed-point of a contractive operator. The optimal value function V ? is such a fixed-point and
satisfies the Bellman optimality equations [8]:

V ?(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ?(s′)
)

. (1)
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Figure 1: XLVIN model summary. The individual modules are explained (and colour-coded) in
Section 3.1, and the dataflow is outlined in Section 3.2.

TransE The TransE [9] loss for embedding objects and relations can be adapted to RL. State
embeddings are obtained by an encoder z : S → Rk and the effect of an action in a given state
is modelled by a translation model T : Rk × A → Rk. Specifically, T (z(s), a) is a translation
vector to be added to z(s) in order to obtain an embedding of the resulting state when taking action
a in state s.1 Such embeddings should also be far away from all other states z(s̃). Therefore, the
embedding functions are optimized using the following variant of the triplet loss:

L = d(z(s) + T (z(s), a), z(s′)) + max(0, ξ − d(z(s̃), z(s′))) (2)

where ξ is the hyperparameter of the hinge loss, (s, a, s′) is a transition in a given MDP and s̃ is a
negative sample state. Trajectories sampled from the MDP can be used as a training set of positive
triplets (s, a, s′), whereas negative triplets (s, a, s̃) are obtained by sampling s̃ uniformly at random.

GNNs and algorithmic executors Graph neural networks (GNNs) have been intensively studied
as a tool to process graph-structured inputs, and were successfully applied to various RL tasks [46,
29, 1]. GNN operations are commonly expressed through the message passing framework [18]. For
each node i in the graph, a set of messages is computed—one message for each neighbouring node
j, derived by applying a message function M to the relevant node and edge features (~hi,~hj , ~eij).
Incoming messages in a neighbourhood N (i) are then aggregated through a permutation-invariant
operator

⊕
(such as sum or max), obtaining a summarised message ~mi:

~mn+1
i =

⊕
j∈N (i)

Mn(~h
n
i ,
~hnj , ~e

n
ij) (3)

The features of node i are then updated through a function U applied to these summarised messages:

~hn+1
i = Un(~h

n
i , ~m

n+1
i ) (4)

An important research direction explores the use of neural networks for learning to execute
algorithms—which was recently extended to algorithms on graph-structured data [45]. In partic-
ular, [48] establishes algorithmic alignment between GNNs and dynamic programming algorithms.
Furthermore, [45] show that supervising the GNN on the algorithm’s intermediate results is highly
beneficial for out-of-distribution generalization. As VI is, in fact, a dynamic programming algo-
rithm, a GNN executor is a suitable choice for learning it, and good results on executing VI have
emerged on synthetic graphs [11].

3 XLVIN Architecture

With all of the above components in place, we can fully specify the computations of the eXecuted
Latent Value Iteration Network (XLVIN). Throughout this section, we recommend referring to Fig-
ure 1 for a visualisation of the model dataflow (more compact overview in Appendix A).

1For stochastic MDPs, the resulting embedding should be understood as an expectation under P (s′|s, a).
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We propose a policy network—a function, πθ(a|s), which for a given state s ∈ S specifies a prob-
ability distribution of performing each of the actions a ∈ A in that state. Here, θ are the neural
network parameters, to be optimised using gradient ascent.

3.1 XLVIN modules

Encoder The encoder function, z : S → Rk, consumes state representations s ∈ S and produces
flat embeddings, ~hs = z(s) ∈ Rk. The design of this component is flexible and may be dependent
on the structure present in states. For example, pixel-based environments will necessitate CNN
encoders, while environments with flat observations are likely to be amenable to MLP encoders.

Transition The transition function, T : Rk × A → Rk, models the effects of taking actions, in
the latent space. Accordingly, it consumes a state embedding z(s) and an action a and produces the
appropriate translation of the state embedding, to match the embedding of the successor state (in
expectation). That is, it is desirable that T satisfies the following property:

z(s) + T (z(s), a) ≈ Es′∼P (s′|s,a)z(s
′) (5)

As T operates in a flat embedding space, it is commonly realised as an MLP.

Executor The executor function, X : Rk × R|A|×k → Rk, generalises the planning modules
proposed in VIN [41] and GVIN [32]. It processes an embedding ~hs of a given state s, along-
side a neighbourhood set N (~hs), which contains (expected) embeddings of states that immediately
neighbour s—for example, through taking actions. Hence,

N (~hs) ≈
{
Es′∼P (s′|s,a)z(s

′)
}
a∈A (6)

The executor combines the neighbourhood set features to produce an updated embedding of state
s, ~χs = X(~hs,N (~hs)), which is mindful of the properties and structure of the neighbourhood.
Ideally, X would perform operations in the latent space which mimic the one-step behaviour of VI,
allowing for the model to meaningfully plan from state s by stacking several layers of X (with K
layers allowing for exploring length-K trajectories). Given the relational structure of a state and its
neighbours, the executor is commonly realised as a graph neural network (GNN).

Actor & Tail components The actor function,A : Rk×Rk → [0, 1]|A| consumes the state embed-
ding~hs and the updated state embedding ~χs, producing action probabilities πθ(a|s) = A

(
~hs, ~χs

)
a
,

specifying the policy to be followed by our XLVIN agent. Lastly, note that we may also have ad-
ditional tail networks which have the same input as A. We train XLVINs using proximal policy
optimisation (PPO) [37], which necessitates a state-value function: V : Rk × Rk → R. Hence, we
also include V as a component of our model.

3.2 Overview of XLVIN

Putting all of the above components together, we now present a step-by-step algorithm used by
XLVINs to derive a policy πθ(a|s), for a given input state s and executor depth K:

1. Embed the input state by using the encoder function: ~hs = z(s).

2. Initialise the depth-0 set of state embeddings to the singleton set, S0 = {~hs}, containing
only the embedding of s. Accordingly, initialise the set of edges to E = ∅.

3. For each graph depth, k ∈ [0,K]:

(a) Initialise the depth-(k + 1) embedding set to Sk+1 = ∅.
(b) For each state embedding in the previous depth, ~h ∈ Sk, and action, a ∈ A:

i. Compute (expected) neighbour embedding of ~h upon taking action a using the
transition model: ~h′ = ~h+ T (~h, a).

ii. Attach ~h′ to the graph, by Sk+1 = Sk+1 ∪ {~h′}, E = E ∪ {(~h,~h′, a)}.
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(c) For each state embedding ~h ∈ Sk, define its neighbourhood as the set of all adjacent
embeddings: N (~h) = {~h′ | ∃α ∈ A.(~h,~h′, α) ∈ E}.

4. Run the execution model over the graph specified by the nodes S =
⋃K
k=0 Sk and edges E,

by repeatedly applying ~h = X(~h,N (~h)), for every embedding ~h ∈ S, for K steps. Denote
the updated embedding of s, obtained by the above procedure, as ~χs.

5. Finally, use the actor and tail to predict the policy and value functions from the state em-
bedding and updated state embedding of s: πθ(s, ·) = A(~hs, ~χs); V (s) = V (~hs, ~χs).

Discussion The entire procedure is end-to-end differentiable, does not impose any assumptions on
the structure of the underlying MDP, and has the capacity to perform computations directly aligned
with value iteration. Hence our model can be considered as a generalisation of VIN-like methods to
settings where the MDP is not provided or otherwise difficult to obtain.

Our tree expansion strategy is breadth-first, which expands every action from every node, yielding
O(|A|K) time and space complexity. While this is prohibitive for scaling up to larger values of K,
we have empirically found that performance tends to plateau by K ≤ 4 for all environments we
have considered, mirroring prior work on implicit planning [13].

We defer allowing for deeper expansions and large action spaces to future work, but note that it will
likely require a rollout policy, selecting actions to expand from a given state. For example, I2A
[36] obtains a rollout policy by distilling the agent’s policy network. Extensions of our model to
continuous actions could also be achieved by rollout policies, although discretising the action space
through binning [42] is also a viable route.

3.3 XLVIN Training

As discussed in Section 3.1, our transition function, T , and executor function, X , should ideally
respect certain properties (e.g. Equations 5–6). We pre-train both of them using established methods
in the literature; [28, 43] for TransE and [11] for the executor. Due to space constraints, we report
detailed pre-training information in Appendix B.

To optimise the neural network parameters θ, we use proximal policy optimisation (PPO)2 [37]. Note
that the PPO gradients also flow into parameters of T and X , which has the potential to displace
them from the properties required by the above, leading to either poorly constructed graphs (that
don’t respect the underlying MDP) or lack of VI-aligned computation.

For the transition model, we resolve this by periodically re-training on the TransE loss during train-
ing (with a multiplicative factor of 0.001 to the loss in Equation 2). As we have no such easy way of
retraining the executor, X , without knowledge of the underlying MDP, we instead opt to freeze the
parameters ofX after pre-training, treating them as constants rather than parameters to be optimised.

While we found it sufficient to fine-tune on TransE using only the trajectories obtained from our pol-
icy network, we note that, especially once the policy becomes more exploitative, the data collected in
this way may strongly bias the transition model and make it unusable for exploration. Hence, we an-
ticipate that some environments will require a careful tradeoff between exploration and exploitation
for the data collection strategy for training the transition model.

4 Experiments

We now proceed to evaluating the proposed XLVIN architecture across three distinct kinds of envi-
ronments, and a variety of training and testing modes. Our work is centered around the following
three research questions, which we will repeatedly refer to throughout this section:

Q1 How do XLVINs compare to (G)VINs when they are applicable (i.e. on fixed, known and
discrete MDPs)? Is the graph built within XLVINs as useful as the underlying MDP?

Q2 Do XLVINs effectively generalise the VIN model? Do they outperform baseline architec-
tures (without the transition and executor models) across general environments?

2We use the publicly available PyTorch PPO implementation and hyperparameters from the following repos-
itory by Ilya Kostrikov: https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.
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Q3 Does the XLVINs’ environment model help them robustly plan? Are XLVINs amenable to
dynamically changing environments (e.g. continual learning) or low-data regimes?

4.1 Experimental setup

We will now categorise our environments into three types—for further details, see Appendix C.

Known MDP In order to compare XLVINs performance against VINs and GVINs (Q1) we evalu-
ate on an established environment with a known, fixed and discrete MDP. We use the 8×8 grid-world
mazes proposed by [41]. The observation for this environment consists of the maze image, the start-
ing position of the agent and the goal position. Every maze is associated with a difficulty level, equal
to the length of the shortest path between the start and the goal.

We utilise this difficulty to formulate the continual maze task: the agent is, initially, trained to solve
only mazes of difficulty 1. Once the agent reaches 95% success rate on the last 1,000 sampled
episodes of difficulty d, it automatically advances to difficulty d+ 1 (without observing difficulty d
again). If the agent fails to reach 95% within 1,000,000 trajectories, it is considered to have failed.
At each passed difficulty, the agent is evaluated by computing its success rate on held-out test mazes.

Setting up the task in this way allowed us to evaluate the resilience of the agents to catastrophic for-
getting (Q3)—as the difficulties get harder, the models get further inspired to memorise the training
set (see Appendix D for further statistics) We also test out-of-distribution generalisation (training
on 8× 8 mazes, testing on 16× 16), allowing for another way to test the agents’ robustness (Q3).

Given the grid-world structure, our encoder for the maze environment is a three-layer CNN comput-
ing 128 latent features and 10 outputs—which we describe in Appendix E. It is important to note
that the VIN model of [41] performs the aggregation by slicing directly the features on the agent’s
coordinates. This assumes upfront knowledge of where the agent actually is on the map (rather than
having to infer it from data) and hence puts VINs in a privileged position. For a possibly fairer com-
parison (Q1), we also attempted to train VIN-mean and VIN-max—VIN models where the slicing
is replaced by global average pooling or global max pooling.

The transition function is a three-layer MLP with layer normalisation [4] after the second layer, for
all environments. For mazes, it computes 128 hidden features and applies ReLU.

The executor is, for all environments, identical to the message passing executor of [11]. For mazes,
we exploit the fact that the MDP is known: we train the executor exactly on the graph structures
generated from the training mazes; please see Appendix F for further details. We apply the executor
until depth K = 4, with layer normalisation [4] applied after every step.

Continuous-space observations The latent-space execution of XLVINs allow us to deploy it in
generic environments—especially, continuous-space environments are now supported without hav-
ing to discretise them. We investigate the performance of XLVIN across these environments (Q2),
focusing on three classical control environments from the OpenAI Gym: CartPole-v0, Acrobot-v1
and MountainCar-v0. We also address Q3 by presenting extremely-limited-data scenarios.

The encoder function is now a three-layer MLP with ReLU activations, computing 50 output fea-
tures and F hidden features, where F = 64 for CartPole, F = 32 for Acrobot, and F = 16 for
MountainCar. The same hidden dimension is also used in the transition function, which otherwise
matches the one used for mazes.

The executor has been trained from synthetic graphs which are designed to imitate the dynamics of
CartPole very crudely—the MDP graphs being binary trees where only certain leaves carry zero re-
ward and are terminal. We also attempt training the executor from completely random deterministic
graphs—making no assumptions on the underlying environment. More details on the graph con-
struction, for both of these approaches, is given in Appendix F. The same trained executor is then
deployed across all environments, to demonstrate robustness to synthetic graph construction (Q3).
In all cases, the XLVIN uses K = 2 executor layers.

Before moving on, it is worthy to note that CartPole offers dense and frequent rewards—making it
easy for policy gradient methods. We make the task challenging by sampling only 10 trajectories
at the beginning, and not allowing any further interaction—beyond 100 epochs of training on this
dataset. Conversely, Acrobot and MountainCar are both sparse-reward, and known to be challenging
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Table 1: Mean scores for CartPole-v0, Acrobot-v1 and MountainCar-v0 after training, averaged
over 100 episodes and five seeds. Baseline CartPole results reprinted from [43].

CartPole-v0 100 trajectories Only 10 trajectories

REINFORCE 23.84 ± 0.88 -
WM-AE 114.47 ± 17.32 -
LD-AE 154.73 ± 50.49 -
DMDP-H (J = 0) 72.81 ± 20.16 -
PRAE, J = 5 171.53 ± 34.18 -
PPO - 104.6 ± 48.5
XLVIN-R - 199.2 ± 1.6
XLVIN-CP - 195.2 ± 5.0

Acrobot-v1 Score

PPO -500.0 ± 0.0
XLVIN-R -353.1 ± 120.3
XLVIN-CP -245.4 ± 48.4

MountainCar-v0 Score

PPO -200.0 ± 0.0
XLVIN-R -185.6 ± 8.1
XLVIN-CP -168.9 ± 24.7

for policy gradient. For these environments, we sample 5 trajectories at a time, twenty times during
training (for a total of 100 trajectories).

Figure 2: Success rate on 8 × 8
(top) and 16 × 16 (bottom) held-
out mazes for XLVIN, PPO, VIN
and GVIN, obtained after passing
each level of 8 × 8 train mazes.
VIN-mean and VIN-max failed to
pass difficulty 1.

Pixel-space Lastly, we investigate how XLVINs perform
on high-dimensional pixel-based observations (Q2), using the
Atari-2600 [7]. We focus on three games: Freeway, Alien and
Enduro. These environments encompass various aspects of
complexity: sparse rewards (on Freeway), larger action spaces
(18 actions for Alien), visually rich observations (changing
time-of-day on Enduro). Further, we successfully re-use (Q3)
the executor trained on random deterministic graphs, showing
additionally that that it is comparable to using the CartPole-
based graphs on Freeway (whose “up-and-down” structure
aligns it somewhat to such environments). We evaluate the
agents’ low-data performance by allowing only 1,000,000 ob-
served transitions (Q3). We re-use exactly the environment
and encoder from here3, and run the executor for K = 2 lay-
ers for Freeway and Enduro and K = 1 for Alien.

4.2 Results

In results that follow, we use “PPO” to denote our baseline
model-free agent; it has no transition/executor model, but oth-
erwise matches the XLVIN hyperparameters. When applica-
ble, we use “XLVIN-CP” to denote XLVIN executors pre-
trained using CartPole-style synthetic graphs, and “XLVIN-
R” for pre-training them on random deterministic graphs.

Continual maze The results of our continual maze eval-
uation are summarised in Figure 2. We observe that, in-
distribution, the XLVIN is competitive with all other models
(including VIN and GVIN—that fails to pass difficulty 6). It is also the most resilient to level 10,
which has only one maze, and is hence very easy to overfit to.

The XLVIN remains competitive with the baseline model when evaluated out-of-distribution. There
is a gap to VINs, which can be attributed to the previously mentioned slicing—corroborated by
the fact both VIN-mean and -max failed to pass even level 1 of the 8 × 8 mazes. Generally, the
slicing operation will underperform whenever some level of global context needs to be taken into
account when determining the grid-world’s transitioning or reward rules. In Appendix G, we illus-
trate explicitly how XLVINs outperform VINs in a contextual maze: a slightly-modified version of
the continual maze grid world, where such global context can modify the environment dynamics.

3https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_
acktr/model.py#L169-L195
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Figure 3: Average reward on Freeway, Alien and Enduro over 1,000,000 processed transitions.

Figure 4: Top: A test maze (left) and the PCA projection of its TransE state embeddings (right),
colour-coded by distance to goal (in green). Bottom: PCA projection of the XLVIN state embed-
dings after passing the first (left), second (middle), and ninth (right) level of the continual maze.

CartPole, Acrobot and MountainCar Results for the continuous-space control environments are
provided in Table 1. We find that, for CartPole, the XLVIN model solves the environment from only
10 trajectories, outperforming all the results given in [43] (incl. REINFORCE [47], Autoencoders,
World Models [22], DeepMDP [16] and PRAE [43]), while using 10× fewer samples.

Further, our model is capable of solving the Acrobot and MountainCar environments from only 100
trajectories, in spite of sparse rewards. Conversely, the baseline model is unable to get off the ground
at all, remaining stuck at the lowest possible score in the environment until timing out. The above
results still hold when XLVIN is trained on the random deterministic graphs, demonstrating that the
executor training need not be dependent on knowing the underlying MDP specifics.

Freeway, Alien and Enduro Lastly, the average reward of the Atari agents across the first million
transitions can be visualised in Figure 3. From the inception of the training, the XLVIN model
explores and exploits better, consistently remaining ahead of the baseline model in the low-data
regime (matching it in the latter stages of Enduro). The fact that its executor was transferred from
randomly generated graphs (Appendix F) is a further statement to the model’s robustness.

4.3 Qualitative results

We qualitatively study the embeddings learnt by the encoder (and transition model), hoping to elu-
cidate the mechanism in which XLVIN organises its plan (and hence provide further insight on Q3).
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Figure 5: Comparison of XLVIN and ATreeC update rules over the first 1,000,000 Atari transitions.

At the top row of Figure 4, we (left) colour-coded a specific 8× 8 test maze by proximity to the goal
state, and (right) visualised the 3D PCA projections of the “pure-TransE” embeddings of these states
(prior to any PPO training), with the edges induced by the transition model. Such a model merely
seeks to organise the data, rather than optimise for returns: hence, a grid-like structure emerges.

At the bottom row, we visualise how these embeddings and transitions evolve as the agent keeps
solving levels; at levels one (left) and two (middle), the embedder learnt to distinguish all 1-step and
2-step neighbours of the goal, respectively, by putting them on opposite parts of the projection space.
This process does not keep going, because the agent would quickly lose capacity. Instead, by the
time it passes level nine (right), grid structure emerges again, but now the states become partitioned
by proximity: nearer neighbours of the goal are closer to the goal embedding. In a way, the XLVIN
agent is learning to reorganise the grid; this time in a way that respects shortest-path proximity.

5 Ablation studies

Our XLVIN model is powered by a synergy of learned latent-space models and latent-space graph
algorithm executors. To probe the influence of these components, we conclude with two ablation
studies, directly comparing our architecture incorporating pixel-based world models, or implicit
planners that rely on explicitly modelling scalar quantities, such as ATreeC [13].

Comparison to pixel-based world models Aligned with prior studies of VAE losses on Atari
[3], our attempts to use a world model based on pixel reconstruction (e.g. [23]) for XLVINs were
unsuccessful. This supports using transition models optimised in the low-dimensional latent space.
For details and visualisations, see Appendix H.

Comparison to scalar value modelling We compare our results with the ATreeC architecture
[13], but still using the PPO loss. ATreeC relies on explicitly invoking a TD(λ) backup to combine
scalar-level predictions in every node of the expanded tree and compute the final policy logits. Since
the ATreeC policy is directly tied to the result of applying TD(λ), its ultimate performance is closely
tied to the quality of its scalar value predictions.

The ATreeC model failed to solve any of the continuous-state environments (with its CartPole reward
marginally exceeding the PPO baseline, at 117.1 ± 56.2, and Acrobot and MountainCar staying at
-500 and -200, respectively). On all three Atari environments, it consistently trailed behind XLVIN
during the first 500,000 transitions (Figure 5), and on Enduro, it underperformed even compared to
the PPO baseline, indicating overreliance on scalar predictions may damage low-data performance.

6 Conclusions

We presented eXecuted Latent Value Iteration Networks (XLVINs), combining recent progress in
self-supervised contrastive learning, graph representation learning and neural algorithm execution
to generalise Value Iteration Networks to irregular, continuous or unknown MDPs. Our results
have shown that XLVINs have matched or outperformed appropriate baselines, often at low-data or
out-of-distribution regimes. The learnt executors are robust and transferable across environments,
despite being trained on synthetic graphs that need not align with the underlying MDP. XLVINs
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represent, to the best of our knowledge, one of the first times neural algorithmic executors are used
for implicit planning, and we believe that this is a very promising direction for future RL research.
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[12] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960.
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Figure 6: XLVIN model summary with compact dataflow. The individual modules are explained
(and colour-coded) in Section 3.1, and the dataflow is outlined in Section 3.2.

A Alternate rendition of XLVIN dataflow

See Figure 6 for an alternate visualisation of the dataflow of XLVIN—which is more compact, but
does not explicitly sequentialise the operations of the transition model with the operations of the
executor.

B Pre-training of transition and executor functions

The transition condition of Equation 5 perfectly aligns with the TransE loss [9], hence we pre-train
T by optimising the loss function of Equation 2, using transitions sampled in the environment using
a random policy—not unlike the prior work by [28, 43] that also trains transition functions in this
way.

The desirable behaviour of the executor is to align with VI, and hence we pre-train X to be pre-
dictive of the value updates performed by VI, following the work of [11]. Note that standard VI
procedure requires access to a fully-specified MDP, over which we can generate VI trajectories to
use as training data. When an MDP is not available, following the remarks of [11], we generate
synthetic discrete MDPs that align with the target MDP as much as possible4—finding that useful
transfer still occurs, echoing the findings of [11].

To summarise in brief, the executor function training proceeds as follows:

1. First, generate a dataset of MDPs which, as much as possible, mimics in some way the
characteristics of the true MDP we’d like to deploy on (e.g. determinism, number of ac-
tions, etc.). If no such knowledge is available upfront, resort to a generic graph distribution
like Erdős-Rényi or Barabási-Albert.

2. Then, execute the Value Iteration algorithm on these MDPs, keeping track of intermediate
values Vt(s) at each iteration t, until convergence.

3. Supervise the executor network—a graph neural network operating over the transitions of
the MDP as edges—to receive Vt(s)—and all other parameters of the MDP—as inputs, and
predict Vt+1(s) as outputs (optimise using mean-squared error).
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Figure 7: The seven environments considered within our evaluation: 8× 8 and 16× 16 mazes [41]
(known grid-like MDP), continuous control environments (CartPole-v0, Acrobot-v1, MountainCar-
v0) and pixel-based environments (Atari Freeway, Alien and Enduro).

C Environments under study

We provide a visual overview of all seven environments considered in Figure 7.

Maze The maze environment with randomly generated obstacles from [41]. Observations include
a map of the maze (pointing out all obstacles), an indicator of the agent’s location, and an indicator
of the goal location. Actions correspond to moving in one of the eight principal directions, incurring
a reward of −0.01 every move (to encourage shorter solutions), −1 for hitting an obstacle (which
terminates the episode), and 1 for hitting the goal (which also terminates the episode).

CartPole The CartPole environment is a classic example of continuous control, first proposed by
[5]. The goal is to keep the pole connected by an un-actuated joint to a cart in an upright position.
Observations are four-dimensional vectors indicating the cart’s position and velocity as well as pole’s
angle from vertical and pole’s velocity at the tip. Actions correspond to staying still, or pushing the
engine forwards or backwards. The agent receives a fixed reward of +1 for every timestep that the
pole remains upright. The episode ends when the pole is more than 15 degrees from the vertical, the
cart moves more than 2.4 units from the center or by timing out (at 200 steps), at which point the
environment is considered solved.

Acrobot The Acrobot system includes two joints and two links, where the joint between the two
links is actuated. Initially, the links are hanging downwards, and the goal is to swing the end of the
lower link up to a given height. The environment was first proposed by [40]. The observations—
specifying in full the Acrobot’s configuration—constitute a six-dimensional vector, and the agent is
able to swing the Acrobot using three distinct actions. The agent receives a fixed negative reward of
−1 until either timing out (at 500 steps) or swinging the acrobot up, when the episode terminates.

MountainCar The MountainCar environment is an example of a challenging, sparse-reward,
continuous-space environment first proposed by [31]. The objective is to make a car reach the
top of the mountain, but its engine is too weak to go all the way uphill, so the agent must use gravity
to their advantage by first moving in the opposite direction and gathering momentum. Observations
are two-dimensional vectors indicating the car’s position and velocity. Actions correspond to staying
still, or pushing the engine forward or backward. The agent receives a fixed negative reward of −1
until either timing out (at 200 steps) or reaching the top, when the episode terminates.

Freeway Freeway is a game for the Atari 2600, published by Activision in 1981, where the goal is
to help the chicken cross the road (by only moving vertically upwards or downwards) while avoiding
cars. It is a standard part of the Atari Learning Environment and the OpenAI Gym.

Observations in this environment are the full framebuffer of the Atari console while playing the
game, which has been appropriately preprocessed as in [30]. Actions correspond to staying still,
moving upwards or downwards. Upon colliding with a car, the chicken will be set back a few lanes,
and upon crossing a road, it will be teleported back at the other side to cross the road again (which
is also the only time when it receives a positive reward of +1). The game automatically times out
after a fixed number of transitions.

Enduro Enduro is a game for the Atari 2600, published by Activison in 1983. The goal of the
game is to complete an endurance race, overtaking a certain number of cars each day of the race to

4If no prior knowledge about the environment is known, one might resort to generic graph distributions,
such as Erdős-Rényi [12] or Barabási-Albert [2].
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Figure 8: Number of mazes with the optimal path of given length from: 8 × 8 train dataset (left),
8× 8 test dataset (middle) and 16× 16 test dataset (right).

continue to the next day. It is a standard part of the Atari Learning Environment and the OpenAI
Gym.

Observations in this environment are the full framebuffer of the Atari console while playing the
game, which has been appropriately preprocessed as in [30]. This game is one of the first games
with day/night cycles as well as weather changes which makes it particularly visually rich. There
are nine different actions we can take in this environment corresponding to staying still as well as
accelerating, decelerating, moving left/right and combinations of two of them.

Alien Alien is a game for the Atari 2600, published by 20th Century Fox in 1982. The goal of
the game is to destroy the alien eggs laid in the hallways (similar to the pellets in Pac-Man) while
running away from three aliens on the ship. It is a standard part of Atari Learning Environment and
the OpenAI Gym.

Observations in this environment are the full framebuffer of the Atari console while playing the
game, which has been appropriately preprocessed as in [30]. There are 18 different actions we can
take in this environment corresponding to staying still, firing the flamethrower and moving or firing
the flamethrower in eight directions.

D Data distribution of mazes

We provide an overview of simple count-based statistics of the maze datasets, stratified by difficulty,
in Figure 8. Namely, we can observe that the distribution of 8 × 8 maze difficulties follows a
power-law, whereas the 16 × 16 maze difficulty counts decay linearly. This poses an additional
challenge when extrapolating out-of-distribution, as the distributions of the two testing datasets vary
drastically—and what worked well for one’s performance measure may not necessarily work well
for the other.

E Encoder on continual maze

Given the grid-world structure, our encoder for the maze environment is a CNN. We stack three
convolutional layers computing 128 features, of kernel size 3× 3, each followed by batch normali-
sation [26] and the ReLU activation. We then aggregate all positions by performing global average
pooling5 [39]. Finally, the aggregated representation is passed to a two-layer MLP with hidden di-
mension 128 and output dimension 10, with a ReLU activation in-between. The output dimension
was chosen to be comparable with VIN [41].

F Synthetic graphs

Figure 9 presents the three kinds of synthetic graphs used for pretraining the GNN executor. The
one for mazes (left) emphasises the terminal node as a node to which all nodes are connected; all
other nodes have a maximum of eight neighbours, corresponding to the possible action types.

In all other cases, we pre-train the executor using randomly generated deterministic graphs (right):
for |S| = 20 states and |A| = 8 actions, we create a |S|-node graph. For each state-action pair

5Note that we could not have performed the usual flatten operation, in order to generalise to 16× 16 mazes.

15



Figure 9: Synthetic graphs constructed for pre-training the GNN executor: Maze (left), CartPole
(middle) and random deterministic (20 states, 8 actions) (right)

we select, uniformly at random, the state it transitions to, deterministically. We sample the reward
model using the standard normal distribution. Overall, the graphs are sampled as follows:

T̃ (s, a) ∼ Uniform(|S|) (7)

P (s′ | s, a) =

{
1 s′ = T̃ (s, a)

0 otherwise
(8)

R(s, a) ∼ N (0, 1) (9)

These k-NN style graphs do not assume upfront any structural properties of the underlying MDP,
and are a good prior distribution for evaluating the performance of XLVIN.

For CartPole-style environments, we attempt a third type of graph (middle). It is a binary tree, where
red nodes represent nodes with reward 0, and blue nodes have reward 1. This aligns with the idea
that going further from the root, which is equivalent with taking repeated left (or right) steps, leads
to being more likely to fail the episode.

We also attempt using the CartPole graph for pre-training the executor for the other two continuous-
observation environments (MountainCar, Acrobot) and for Freeway. Primarily, the similar action
space of the environments is a possible supporting argument of the observed transferability. More-
over, MountainCar and Acrobot can be related to a inverted reward graph of CartPole, with more
aggressive combinations left/right steps often bringing a higher chance of success.

G Contextual maze environment

The grid-world based VIN architecture relies on the assumption that the agent is in a fixed and
known environment, and that the current agent coordinate within this environment is known. This
allows value iteration to be aligned with weight-shared convolutional neural networks, followed by
a slicing operation in the agent coordinate. While this gives the final embedding higher relevance
compared to pooling all of the pixels together, it also makes the final embedding tightly localised
around an agent’s current state. Should the environment possess any global context that dictates the
transition and reward dynamics, the VIN model may lack ways to easily integrate this necessary
contextual information.

To illustrate this issue, we propose a slight modification to our continual maze environment: the
contextual maze. We randomly sample two scalars, a, b ∼ U(0, 1), and condition the reward model
depending on their sum; if a + b ≤ 1, the agent must proceed to the goal as usual; otherwise, the
environment’s reward model is inverted: reaching the goal now provides negative reward, and hitting
(any) wall brings positive reward (and terminates the episode).

This context is provided to the agent through the colour intensity of the left and top border, to match
the values of a and b, respectively—see Figure 10 for an illustration of several procedurally gener-
ated contextual mazes. Successful agents now must meaningfully extract the contextual information
before committing to a plan, which may be unfavourable for the VIN architecture.

Organising the environment into levels (based on the agent’s initial distance to the goal), as before,
and learning in a continual setting, we present the results on held-out test mazes in Figure 11. On
contextual mazes, a clear gap opens up between the slicing-based VIN architecture and context-
based models (XLVIN and PPO). Further, XLVINs once again demonstrate stronger resilience to
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Figure 10: Procedurally generated contextual 8 × 8 mazes. The green cell represents the goal, and
the blue cell represents the agent. Black cells represent walls. The upper and left borders’ intensity
is modified to mirror the sampled values of a and b, determining the environment dynamics.

Figure 11: Success rate of the XLVIN model against VIN and PPO on the contextual maze environ-
ment, after training on each level, on held-out test mazes.

catastrophic forgetting compared to the baselines, by not overfitting to the hardest levels, which also
have the fewest mazes.

H Pixel-based world models

We attempt replacing our Atari transition model with a variant that learns representations through
pixel-based reconstructions (using a VAE objective, as done by [23]). We found that representations
obtained in this way were not useful, we observed that most of our state encodings converged to a
fixed-point, and that the pixel-space reconstructions completely ignored the foreground observations
(see Figure 12). This aligns with prior investigations of VAE-style losses on Atari, which found they
tend to overly focus on reconstructing the background and were less predictive of RAM state than

Figure 12: Freeway frames (above) and reconstructions (below) using a VAE-style world model.
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latent-space models, as well as randomly-initialised CNNs [3]. This comparison stands in favour of
our approach to using a transition model optimised purely in the lower-dimensional latent space.
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